开源SVM库libSVM介绍

转载 2015年11月20日 19:22:10

一、libSVM简介

libSVM是台湾大学林智仁教授等研究人员开发的一个用于支持向量机分类,回归分析及分布估计的c/c++开源库。另外,它也可以用于解决多类分类问题。 libSVM最新的版本是2011年4月发布的3.1版。林智仁教授设计开发该SVM库的目的是为了让其它非专业人士可以更加方便快捷的使用SVM这个统计学习工具。libSVM提供了一些简单易用的接口,从而使得用户可以方便的使用,而不必关心其内部复杂的数学模型和运算过程。libSVM的主要特点有:

(1)各种SVM的表达公式;

(2)有效的多类分类能力;

(3)交叉验证功能;

(4)各种核函数,包括预先计算得到的核矩阵;

(5)用于非平衡数据的加权svm;

(6)提供c++和java源代码;

(7)用于演示SVM分类与回归能力的GUI界面;

.....

很多初学者往往按照以下的步骤使用libSVM:

(1)将数据转换到libSVM指定的格式;

(2)随机选择一个核函数和一些参数;

(3)测试;

这种方法虽然可行,但却不一定能很快达到好的效果。为此,林智仁教授推荐按照以下的步骤来使用libSVM:

(1)将数据转换到libSVM指定的格式;

(2)对数据进行尺度操作(一般指数据的归一化);

(3)考虑RBF(径向基)核函数;

(4)利用交叉验证来得到最好的参数C和r;

(5)用最好的C和r来训练所有训练集合;

(6)测试;

之所以推荐首选径向基核函数,是由于该核可以将数据非线性地映射到高维空间,而且,它还能处理那种特征(数据)及其属性之间呈现非线性关系的情况,而线性核函数只是径向基核函数的一个特例。另外,相比而言,多项式核函数在高维空间有着更多的参数,从而使得模型更加复杂。同时,需要提醒的是,径向基核函数并非万能的,尤其当特征数据的数值本身比较大的时候,线性核函数要更实用一些。

任何人可以在http://www.csie.ntu.edu.tw/~cjlin/libsvm 来下载libSVM开源库。不过,按照开发者的要求,在使用之前,请务必阅读其copyright,并按照其要求进行相应的引用和说明。另外,在使用之前,强烈推荐大家阅读libSVM.zip里面的readme文件。该文件详细描述了libSVM的使用方法及注意事项。


二、详细介绍

鉴于libSVM中的readme文件有点长,而且,都是采用英文书写,这里,我把其中重要的内容提炼出来,并给出相应的例子来说明其用法,大家可以直接参考我的代码来调用libSVM库。

第一部分,利用libSVM自带的简易工具来演示SVM的两类分类过程。(以下内容只是利用libSVM自带的一个简易的工具供大家更好的理解SVM,如果你对SVM已经有了一定的了解,可以直接跳过这部分内容)

首先,你要了解的是libSVM只是众多SVM实现版本中的其中之一。而SVM是一种进行两类分类的分类器,在libSVM最新版(libSVM3.1)里面,已经自带了简单的工具,可以对二分类进行演示。以windows平台为例,将libSVM.zip解压之后,有一个名为windows的子文件夹,里面有一个名为svm-toy.exe的可执行文件。直接双击,运行该可执行文件,显示如下的界面

点击第二个按钮“Run,然后,在左上部分,用鼠标左键随机点几下,代表你选择的第一类模式的数据分布,下图是我随即点了几下的结果

之后,点击“Change”,接着,用鼠标左键在窗口右下方随便点击几下,代表你选择的第二类模式的数据分布,如下图所示:

接着,点击“Run,libSVM就帮你把这两类模式分开了,并用两种不同的颜色区域来代表两类不同的模式,如下图所示:

图中左上方紫色的区域,是第一类模式所在的区域,右下方的蓝色区域,是你选择的第二类模式所在的的区域,而两者的分界面,也就是SVM的最优分类面。当然,SVM是通过核函数将原始数据映射到高维空间,在高维空间进行线性分类。换句话说,在高维空间,这两类数据应该是线性可分的,即:最优分类面应该是一条直线,而这里看到的,是将高维空间分类的结果又映射回原始空间所呈现的分类结果,即:非线性的分类面。细心的朋友可能已经发现,在上述界面的右下角,有一个编辑框,里面写着“-t 2 -c 100”,显然,这是libSVM的一些参数,你也可以试着更改这些参数,来选择不同的核函数、不同的SVM类型等来达到最好的分类效果。

 

第二部分:libSVM中的小工具

libSVM中包含以下可执行程序文件(小工具):

(1)svm-scale:一个用于对输入数据进行归一化的简易工具

(2)svm-toy:一个带有图形界面的交互式SVM二分类功能演示小工具;

(3)svm-train:对用户输入的数据进行SVM训练。其中,训练数据是按照以下格式输入的:

<类别号> <索引1><特征值1> <索引2><特征值2>...

(4)svm-predict:根据SVM训练得到的模型,对输入数据进行预测,即分类。

 

第三部分:libSVM用法介绍:`

      libSVM的所有函数申明及结构体定义均包含在libSVM.h文件当中,在使用过程中,你必须要包含该头文件,并且,对libSVM.cpp进行相应的链接。在对libSVM中的函数用法进行详细介绍之前,我们不妨先简单了解一下libSVM.h中一些结构体的含义。

struct svm_node

{

int index;

double value;

};

该结构体,定义了一个“SVM节点”,即:索引i及其所对应的第i个特征值。这样n个相同类别号的SVM节点,就构成了一个SVM输入向量。即:一个SVM输入向量可以表示为如下的形式:

类别标签 索引1:特征值索引2:特征值索引3:特征值3...

我们可以将若干个这样的输入向量输入到libSVM进行训练,或者,输入一个类别标签未知的向量对其进行预测。

struct svm_problem

{

int l;

double *y;

struct svm_node **x;

};

该结构体中的l代表训练样本的个数;double型指针y代表l个训练样本中每个训练样本的类别号,也就是我们常说的“标签”;而"SVM节点"x,则是一个指针的指针(如果你对指针的指针不熟悉,完全可以把x理解为一个矩阵),x所指向的内容就是所有训练样本所有的特征值数据。

假如我们有下面的训练样本数据:

类别标签   特征值 特征值2 特征值3 特征值4 特征值5

   1       0     0.1     0.2      0       0

   2      0     0.1     0.3     -1.2       0

   1        0.4      0      0      0       0

   2      0     0.1       0      1.4      0.5

  1    -0.1    -0.2       0.1      1.1      0.1

那么,svm_problem结构体中的l=5(共有5个训练样本),y=[1,2,1,2,1];指针x所指向的内容可以视为5个行向量,每个行向量有5列,即:x指代一个5*5的矩阵,其值为:

(1,0)(2,0.1)(3,0.2)(4,0)(5,0)(-1,?)

(1,0)(2,0.1)(3,0.3)(4,-1.2)(5,0)(-1,?)

(1,0.4)(2,0)(3,0)(4,0)(5,0)(-1,?)

(1,0)(2,0.1)(3,0)(4,1.4)(5,0.5)(-1,?)

(1,-0.1)(2,-0.2)(3,0.1)(4,1.1)(5,0.1)(-1,?) 

需要提醒的是,这里,每一行最后一列都是以“-1”开头,这是libSVM规定的特征值向量的结束标识;此外,索引应该按照升序方式进行排列。

       

enum { C_SVCNU_SVCONE_CLASSEPSILON_SVRNU_SVR };//libSVM规定的SVM类型

 

enum { LINEARPOLYRBFSIGMOIDPRECOMPUTED };//libSVM规定的核函数的类型

 

struct svm_parameter

{

int svm_type;//取值为前面提到的枚举类型中的值

int kernel_type;//取值为前面提到的枚举类型中的值

int degree; //用于多项式核函数/

double gamma;//用于多项式、径向基、S型核函数

   double coef0;//用于多项式和S型核函数

 

/* 以下参数仅仅用于训练阶段 */

double cache_size//核缓存大小,以MB为单位

double eps; //误差精度小于eps时,停止训练

double C; //用于C_SVC,EPSILON_SVR,NU_SVR

int nr_weight; //用于C_SVC

int *weight_label;//用于C_SVC

doubleweight;//用于C_SVC

double nu;//用于NU_SVC,ONE_CLASS,NU_SVR

double p;//用于EPSILON_SVR

int shrinking; //等于1代表执行启发式收缩

int probability;//等于1代表模型的分布概率已知

};

该结构体定义了libSVM中的用到的SVM参数。其中svm_type可以是C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR中的任意一种,代表着SVM的类型;

C_SVC: C-SVM classification

    NU_SVC: nu-SVM classification

    ONE_CLASS: one-class-SVM

    EPSILON_SVR: epsilon-SVM regression

    NU_SVR: nu-SVM regression

kernel_type可以是LINEAR, POLY, RBF, SIGMOID中的一种,代表着核函数的类型;

LINEAR: u'*v,线性核函数;

    POLY: (gamma*u'*v + coef0)^degree,多项式核函数;

    RBF: exp(-gamma*|u-v|^2),径向基核函数;

    SIGMOID: tanh(gamma*u'*v + coef0)S型核函数;

PRECOMPUTED: kernel values in training_set_file,自定义的核函数;

nr_weight, weight_label, and weight这三个参数用于改变某些类的惩罚因子。当输入数据不平衡,或者误分类的风险代价不对称的时候,这三个参数将会对样本训练起到非常重要的调节作用。

nr_weightweight_labelweight的元素个数,或者称之为维数。Weight[i]weight_label[i]之间是一一对应的,weight[i]代表着类别weight_label[i]的惩罚因子的系数是weight[i]。如果你不想设置惩罚因子,直接把nr_weight设置为0即可。

为了防止错误的参数设置,你还可以调用libSVM提供的接口函数svm_check_parameter()来对输入参数进行检查。

 

    在使用libSVM进行分类之前,你需要通过样本学习,构建一个SVM分类模型。该分类模型也可以理解为生成一些用于分类的“数据”。当然,构建的分类模型需要保存为文件,以便后续使用。用于libSVM训练的函数,其申明如下所示:

struct svm_model *svm_train(const struct svm_problem *probconst struct svm_parameter *param);

显然,该函数的输入,就是svm_problem结构体的prob指针所指向的内容。该结构体在前面已经介绍过,其内部,不仅包含了训练样本的个数,还包含每个训练样本的“标签”及该训练样本对应的特征数据。而svm_parameter类型的param指针则指定了libSVM所用到的诸如SVM类型,核函数类型,惩罚因子之类的参数。另外,该函数的返回值是一个svm_model结构体,该结构体的定义,在libSVM.cpp当中:

struct svm_model

{

svm_parameter param; //SVM参数设置

int nr_class; //类别数量,对于regression和ne-class SVM这两种情况,该值为2

int l; //支持向量的个数

svm_node **SV; //支持向量

double **sv_coef; //用于决策函数的支持向量系数

double *rho; //决策函数中的常数项

double *probA; // pariwise probability information

double *probB;

 

// for classification only

 

int *label; // 每个类类别标签

int *nSV; //每个类的支持向量个数

int free_sv; //如果svm_model已经通过svm_load_model创建,则该值为1;如果svm_model是通过svm_train创建的,该值为0

};

需要提醒的是,libSVM支持多类分类问题,当有k个待分类问题时,libSVM构建k*(k-1)/2种分类模型来进行分类,即:libSVM采用一对一的方式来构建多类分类器,如下所示:

1 vs 2, 1 vs 3, ..., 1 vs k, 2 vs 3, ..., 2 vs k, ..., k-1 vs k。

用户在得到SVM分类模型之后,需要将其进行保存。在这里,libSVM已经提供了相应的函数接口:

int svm_save_model(const char *model_file_nameconst struct svm_model *model);

在调用训练函数之后,只需要指定保存位置,直接调用该函数,就可以进行相应的保存。

在对样本进行训练得到分类模型之后,就可以利用该分类模型对未知输入数据进行类别判断了,也就是我们常说的“预测”。用于libSVM预测的函数,其申明如下所示:

double svm_predict(const struct svm_model *modelconst struct svm_node *x);

该函数的第一个参数就是利用样本训练得到的SVM分类模型,第二个参数,是输入的未知模式的特征数据,即:得到了表征某一类别的特征数据,根据这些数据,来判断它所对应的类别标签。而SVM分类模型,可以由libSVM定义的下面这个接口函数来进行加载:

struct svm_model *svm_load_model(const char *model_file_name);

此外,在使用上述函数过程中,需要对svm_model及svm_parameter申请内存,而不使用它们的时候,用户需要调用以下两个函数进行内存释放:

void svm_destroy_model(struct svm_model *model);

void svm_destroy_param(struct svm_parameter *param);

出处:http://blog.csdn.net/carson2005/article/details/6539192

相关文章推荐

svm理论与实验之17: libsvm最简单Java示例(2行)

徐海蛟博士 Teaching. 怎么用dos命令行使用svm-scale,svm-train,svm-predict三个程序,我们在前面博文中已经练习过了。这里给出用JAVA调用LibSVM AP...

使用java调用libsvm

来自http://www.xuebuyuan.com/901015.html 1.首先,从林智仁教授那里下载使用包libsvm。这里有很多版本的libsvm,我们找到java版本的。 2....

java学习--Libsvm java版代码注释及详解(一)

由于工作中要用到SVR算法,项目组的系统是用java开发的,因此,为了能与项目组同步,算法需要用java来实现,还好台湾大学的林智仁教授推出了Libsvm的源代码,包括java、c++等语言的源代码,...

Java开发SVM之Eclipse集成LibSVM示例

LIBSVM是台湾大学林智仁(Lin Chih-Jen)教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包。 1、官网下载LibSVM    1)官网:http://w...

用JAVA程序调用LibSVM API

1. LibSVM简介       LibSVM是台湾著名教授陈智仁团队的杰作。具有各个语言版本的接口,包括C/C++、Java、Python、Matlab、C# 等等。这套库运算速度还是挺快的,可以...

开源SVM库libSVM介绍

libSVM是台湾大学林智仁教授等研究人员开发的一个用于支持向量机分类,回归分析及分布估计的c/c++开源库。另外,它也可以用于解决多类分类问题。 libSVM最新的版本是2011年4月发布的3.1版...

libsvm+detector_(libsvm参数说明)

细分析了cvhop.cpp中的compute函数,可以直接调用它来获得样本HOG,然后训练得到检测算子 1.制作样本 2.对每一张图片调用 hog.compute(img, descript...

一些支持向量机(SVM)的开源代码库的链接及其简介

(1)LIBSVM:     http://www.csie.ntu.edu.tw/~cjlin/libsvm/ LIBSVM is an integrated software for sup...

简单python爬虫淘宝图片+界面编程+打包成exe

完整代码见文章最后 第一步:编写爬虫代码 import re import urllib.request def getHtml(url='') : page = urllib.reque...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)