高等数学:第二章 导数与微分(1)导数 求导法则 反函数 复合函数

§2.1  导数的概念

一、从两个例子来谈导数的概念

变速直线运动物体的速度,是物理上隶属于运动学范畴的问题;平面曲线在一点的切线之斜率,则是一个几何问题。尽管这两个问题有很大的区别,但它们却与一个重要的数学概念 —— 导数有十分密切的关系。

设动点于时刻在直线上所处的位置为,于是,称此函数为位置函数。该如何定义动点在某一时刻的瞬时速度呢?

考虑从这一时间间隔,质点从位置移动到,其质点运动的平均速度为:

当时间间隔较短时,此比值可近似地看作质点在时刻的速度。要精确地确定质点在时刻的速度,只需令,对上述表达式取极限,如果这个极限存在,记它为

即:                   (1)

此时,极限值就是质点在时刻(瞬时)速度

用matlab摸拟曲线 在点处的割线转动,最终生成曲线在该点的切线,程序为gs201.m。

设曲线是函数的图形,现讨论上一点处的切线问题。另取上一点,于是割线的斜率为

当点沿趋于时,,如果上式极限存在,设为,即:

                   (2)

就是割线斜率的极限,也就是切线的斜率。从图上可看出,,且是切线的倾角。

二、导数定义

变速直线运动的速度和切线的斜率都归结为求如下极限

这里分别是自变量的增量和函数的增量,即:

,   

等价于,上述极限可改写成新形式:

由于这类极限在工程技术与自然科学领域里经常遇到,因此,我们有必要对这类特殊形式的极限问题给出一个专门的定义。

1、导数定义

设函数在点的某个邻域内有定义,当自变量处取得增量(点仍在该邻域内)时,函数取得增量

如果之比当时的极限存在,则称函数处可导,并称这个极限值为函数处的导数。记作:

        (3)

也可记作:           

显然,表达式(3)可改写成如下等价的形式:

或       

下面我们约定几种说法:

(1)、函数在点处可导时,也称在点具有导数导数存在

(2)、如果极限(3)不存在,称函数在点不可导

(3)、若时,,则函数处是不可导的。但为了描述函数的这一特殊性态,我们宁愿称函数在处的导数为无穷大。并赋予它记号:

2、导函数

如果函数在开区间内的每一点都可导,称函数)在开区间上可导。这时,对任意,都对应着的一个确定的导数值,这样就构成了一个新的函数,我们此函数为导函数。记作:

导函数的定义只需将(3)式中的换成即可:

注意:

虽然在开区间上任意取值,一经取定,对于极限过程来说,它应被视为常量。

很明显,函数在点处的导数,就是它的导函数处的函数值。即:

三、求导举例

【例1】利用导数定义,证明下列导数公式

证明:

 

 

特款:当时,,该表达式的简明,获益于自然对数

【例2】试证明函数  在  处不可导。

由此例,我们可引入左、右导数的概念。

如果极限

存在, 则称此极限值为函数在处的左导数(右导数)。记作:

利用函数极限与其左、右极限的关系,很容易想到下述结论:

函数在点处可导的充要条件是左、右导数存在且相等。

现在, 我们可以给出函数在闭区间上可导的定义:

在开区间内可导, 且  及  都存在。

四、导数的几何意义

由切线问题的讨论可知:

注记:

(1)、当时,,,在点处的切线方程为

切线平行于轴,即曲线在点具有水平切线,其法线方程为

(2)、若,曲线在的切线垂直于轴,故切线方程为 ,法线方程自然是

五、函数的可导性与连续性的关系

【命题】若处可导,则处连续;

反之,却不一定成立。

证明:

故  ( ,当 时)

从而  

故函数处连续。

反过来,结论不真。例如:处连续,但不可导。







§2.2  函数的和、差、积、商求导法则

如果只利用导数的定义来求函数的导数,实在不易。求函数导数是否有简便可行的方法呢?有的!导数在数学形式上只是一种特殊的函数极限,因此,我们可由函数极限的四则运算法则,导出函数求导的四则运算法则

一、函数求导的四则运算法则

在下面的讨论中,总假定:

函数在点处具有导数

【法则一】   

 证明:记 

 

 

【法则二】   

证明: 记,由导数的定义有

【推论】为任意常数,则 

积的求导法则可方便地推广到任意有限个函数积的形式,例如

【法则三】 ,且,则

 

(3)、【一个常用推论】

     (此处的负号容易出错 )

(4)、不可将商的求导法则记成:“商的求导,楼上一撇,楼下一撇”

二、求导举例

【例1】求下列函数的导数或导数值

 

解:(1)

 

解: (2)

 

解: (3)

 

【例2】证明下列基本导数公式:

证明:

 (1)

(2)

 

(3)

 

(4)

请同学们进行课堂练习,我们用mathcad 出题并检查。








§2.3  反函数的导数,复合函数的求导法则

一、反函数的导数

是直接函数,是它的反函数,假定内单调、可导,而且,则反函数在间内也是单调、可导的,而且

                                              (1)

证明: ,给以增量

由  在  上的单调性可知

于是      

因直接函数上单调、可导,故它是连续的,且反函数上也是连续的,当时,必有

即:

【例1】试证明下列基本导数公式

 

证1、为直接函数,是它的反函数

函数 在 上单调、可导,且 

因此, 在 上, 有

 

注意到, 当时,

因此, 

证2  

 在 上单调、可导且 

故 

 

证3  

 

类似地,我们可以证明下列导数公式:

二、复合函数的求导法则

如果在点可导,而在点可导,则复合函数在点可导,且导数为

证明: ,由极限与无穷小的关系,有

去除上式两边得:

的可导性有:

, 

上述复合函数的求导法则可作更一般的叙述:

在开区间可导,在开区间可导,且时,对应的 ,则复合函数内可导,且

                                            (2)

复合函数求导法则是一个非常重要的法则,特给出如下注记:

弄懂了锁链规则的实质之后,不难给出复合更多层函数的求导公式。

【例2】,求 

引入中间变量, 设 ,于是   

变量关系是 ,由锁链规则有:

(2)、用锁链规则求导的关键

引入中间变量,将复合函数分解成基本初等函数。还应注意求导完成后,应将引入的中间变量代换成原自变量。

【例3】求的导数

解:设 ,则,由锁链规则有:

【例4】 设 ,求

由锁链规则有  

           (基本初等函数求导)

          ( 消中间变量)

由上例,不难发现复合函数求导窍门

中间变量在求导过程中,只是起过渡作用,熟练之后,可不必引入,仅需“心中有链”。

然后,对函数所有中间变量求导,直至求到自变量为止,最后诸导数相乘。

请看下面的演示过程:

【例5】证明幂函数的导数公式 ,(为实数)。

证明:设



from: http://sxyd.sdut.edu.cn/gaoshu1/

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值