高等数学:第四章 不定积分(1)不定积分的概念与性质 换元积分法

§4.1  不定积分的概念与性质

一、原函数的概念

【定义】已知是一个定义在区间内的函数,如果存在着函数, 使得对内任何一点,都有

    或     

那么函数就称为在区间内的原函数

例如:在区间上的原函数。

对于原函数,我们很自然地会提出如下几个问题:

【问题一】具备什么条件,就能保证它的原函数一定存在?

【问题二】若有原函数,那么它的原函数会有多少个?

【问题三】若的原函数不止一个,是否可给出它的原函数的通式?

问题一将在下一章中讨论,这里我们仅给出它的结论。

【原函数存在定理】

如果函数在区间内连续,那未在区间内它的原函数一定存在,即:存在,对一切的,均有

简言之:连续函数一定有原函数。

在区间内的一个原函数,即

那么对于任意常数,由于 ,于是,函数族中的任何一个函数也一定是在区间内的原函数。由此可知:

如果有原函数,那么原函数的个数为无限多个。

问题三可由下述结论来解决

【结论】定义在区间上,如果上的一个原函数,那未函数族    (是任意常数) 是在区间上的所有原函数全体。

证明: 设上的另一个不同于的原函数,

则  

  ( 是某一常数 )

即 

这表明:  

因此,上的全体原函数。

二、不定积分概念

【定义】在区间内,函数的带有任意常数项的原函数称为在区间内的不定积分, 记作 

其中:称为积分号,称为被积函数,称为被积表达式,称为积分变量。

由前面的讨论,如果在区间内的一个原函数,那么表达式就是上的不定积分,即

【例1】求  

解:,  所以  是的一个原函数,

因此   (  任意常数 )

例2设曲线通过点(1,2),且其上任一点处的切线斜率等于这点的横坐标的两倍,求此曲线的方程。

解:设所求曲线方程为,按题设, 曲线上任一点处的切线斜率为,这表明: 的一个原函数。

由于 , 所求曲线应是该曲线族中的一条,由于所求曲线过点(1,2),故: , 

于是, 所求曲线为 

曲线族中任意常数的几何意义( 运行程序gs0401.m ):

的图形可由抛物线沿轴方向移动距离得到。

时, 图形向上移;  当时,图形向下移。

由此例,我们可将原函数,不定积分这些概念用几何术语来加以描述。

1、函数的一个原函数的图形叫做函数的一条积分曲线, 其方程为    

2、不定积分的图形叫做函数的积分曲线族, 它们的方程为

3、由可知:

积分曲线族上横坐标相同的点处作切线,这些切线彼此平行。

由不定积分的定义,有如下关系式:

   或  

  或  

由此可见,微分运算 (记号为) 与不定积分运算 (记号为)是互逆的。当记号合在一起时,或者抵消,或者抵消后差一个常数。

三、基本积分表

由于不定积分运算与微分运算是互逆的, 那么,我们可由基本初等函数的微分公式给出基本不定积分公式。

例如:  

时,  由   有

 

基本不定积分公式, 同学们可自行给出, 这里不再赘述。

四、不定积分的性质与举例

【性质一】函数之和的不定积分等于各个函数的不定积分之和, 即

【性质二】求不定积分时,  被积函数中不为零的常数因子可以提到积分号的外面来,即

    ( 为非零常数 )

这两个性质极易证明,只需对等式两边求导,比较两边是否相等即可。

利用不定积分的两个性质与基本的不定积分公式,我们可求一些简单函数的不定积分。

【例3】求 

 

【例4】求 

 

【例5】求 

 

【例6】求 

 

【例7】求 

 

【例8】求 





§4.2  换元积分法

一、第一类换元法

具有原函数,即

,  

又是另一新变量的函数, 且可微,由复合函数的微分法有  ,从而

综合上述讨论,有

【定理一】设具有原函数,可导,则有换元积分公式

这个定理表明:欲求不定积分,可令,则不定积分化为,它将原来的积分变量换成了新的积分变量,求出不定积分之后,再把代换回去。

【例1】求下列不定积分

1、,  2、,  3、

解1

令 ,  

解2

令  ,  

解3

令 ,  

由上面的解题可发现,变量只是一个中间变量,在求不定积分的过程中,只是起过渡作用,最终都要换回到原来的积分变量。因此,在较熟练之后,可以采用不直接写出中间变量的做法。

例如:

研究这些解法可观察到一个非常鲜明的特点:

将被积表达式凑成某个函数的微分形式,再利用积分运算与微分运算的互逆性,达到求不定积分的目的。

因此,第一类换元法又俗称为“凑微分法”。

【典型例题】  求不定积分  

解: 由复合函数求微分的脱衣原理, 有

于是我们有下述典型的凑微分过程:

 

显而易见,凑微分过程与用脱衣原理求复合函数微分过程是完全相反的。因此,凑微分的过程可视为运用“穿衣原理”进行穿衣的过程 --- 即:后脱的衣服应先穿(或:先脱的后穿)。

一般来说,小孩子是先学会脱衣服,再学会穿衣服。这是由于穿衣服有个次序问题。因此,用凑微分法求不定积分较用脱衣原理求复合函数的导数要困难得多。

【例2】求  

解:

【例3】求 

解:

二、第二类换元法

第一类换元法: 

有时会遇到相反情形:

显然,这类换元公式成立需要一定的条件,我们来探讨一下它所需要条件。

(1)、代换应可导;

(2)、等式右端的不定积分要存在,即存在着原函数;

(3)、求出后,必须用的反函数代回去,这样,需要函数具有反函数。

【定理二】若

1、是单调函数;

2、可导, 且

3、具有原函数

则有换元公式

其中: 是  的反函数。

【证明】

 令  , 则

这表明: 是的原函数, 于是有:

【例4】求

解:令 

【例5】求 

解: 令 

, 

这里: 

 

对此例,我们给出两点注解:

1、对于第二类换元法,求反函数是一个麻烦的地方,往往需要一定的技巧。上例的反函数不能简单地用,并将它代入中,得到  这个“形式过重”表达式,因为它不便应用。

2、这一不定积分是一个重要的积分公式。

第二类换元法有一个十分有用的代换 —— 倒置代换。这一代换处理某些不定积分功效显著(用它可消去被积函数的分母中的因子, 特别是幂次为偶数的情形)。

【例6】求 

解: 令 

最后,我们指出:使用变量替换求不定积分,关键是选择恰当的替换,这需要经验。记往! 不适宜的替换会使问题弄得愈来愈复杂。



from: http://sxyd.sdut.edu.cn/gaoshu1/

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值