关闭

安装Theano和keras

标签: keras
6251人阅读 评论(4) 收藏 举报
分类:

最近在学习deep learning,准备搭建Keras环境,但是keras依赖Theano,安装虽然不是特别复杂但是也是走了一些弯路,在此写出记录一下

Theano简介

主页:http://deeplearning.net/software/theano/

Github网址:https://github.com/Theano/Theano

Theano不仅是这篇文章中将要讨论的其他框架的核心库,于其自身而言,它也是一个强大的库,几乎能在任何情况下使用,从简单的logistic回归到建模并生成音乐和弦序列或是使用长短期记忆人工神经网络对电影收视率进行分类。
Theano大部分代码是使用Cython编写,Cython是一个可编译为本地可执行代码的Python方言,与仅仅使用解释性Python语言相比,它能够使运行速度快速提升。最重要的是,很多优化程序已经集成到Theano库中,它能够优化你的计算量并让你的运行时间保持最低。
如果速度的提升还不能满足你,它还内置支持使用CUDA在GPU上执行那些所有耗时的计算。所有的这一切仅仅只需要修改配置文件中的标志位即可。在CPU上运行一个脚本,然后切换到GPU,而对于你的代码,则不需要做任何变化。
尽管Theano使用Cython和CUDA对其性能大大提升,但你仍然可以仅仅使用Python语言来创建几乎任何类型的神经网络结构。

keras简介

主页:http://keras.io/
Github网址:https://github.com/fchollet/keras
Keras是一个简约的、高度模块化的神经网络库,设计参考了Torch,基于Theano和Python语言编写,支持GPU和CPU。它的开发侧重于实现快速试验和创造新的深度学习模型。
如果你需要具有以下功能的深度学习库,采用Keras就恰到好处:
可以很容易地、快速地建立原型(通过总体模块化,极简化并且可扩展化)。
支持卷积网络和递归网络,以及两者的组合。
支持任意连接方式(包括多输入多输出训练)。
Keras库与其他采用Theano库的区别是Keras的编码风格非常简约、清晰。它把所有的要点使用小类封装起来,能够很容易地组合在一起并创造出一种全新的模型。

安装Theano

这个过程我走了两次,第一次安装成功但是对keras的代码运行有错,之后找到原因重装一切正常;


我先说我安装错误的那次:
按照官方文档的介绍:
我的系统是ubuntu14.04,所以直接上:

sudo apt-get install python-numpy python-scipy python-dev python-pip python-nose g++ libopenblas-dev git
sudo pip install Theano

OK,一切正常!貌似是对了,下面我们验证一下
这里写图片描述
看似正常,我们来个toy display玩玩mnist,大家看这篇博客深度学习框架Keras简介,我们就用他的代码玩玩。
这时出现了错误,说“卷积的时候没有定义input_shape“,原始的错误我没截图大概就是这个意思,google了一下原因是keras版本更新API也更新了,一通查documents改错,最后终于全部改好。我的Theano版本是0.7.0,我的这份代码也会上传CSDN,有兴趣的可以下载看看。
一切正常运行之后,结果貌似还不错,10次epoch之后,成功率大概97%左右,上个截图:
这里写图片描述
貌似都对了对吧,可是我们修改下代码八激活函数换成relu看看:
这里写图片描述
又出错,错误是”AttributeError: ‘module’ object has no attribute ‘relu’
只好google了一把,别人是这么说的:
这里写图片描述
原来是安装的Theano不对,不可以用pip的形式安装,直接git克隆安装就可以了。


正确的安装方法是

git clone git://github.com/Theano/Theano.git
cd Theano
python setup.py develop --user
cd ..

执行之后,将Theano目录下的theano目录拷贝到python安装目录下的dist-package下就可以了,我的机器是/usr/lib/python2.7/dist-packages
到此,咱们改下代码运行下,没问题只是成功率低了很多,至少没报错对吧

安装keras

这就没什么好说的了,自己下载下来就行了,keras Github地址

Ref:
[1] Keras API 文档
[2] relu错误解决参考网址
[3] keras下识别mnist
[4] 我的修改代码

0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

使用Keras动手实践深度学习(下)

原文:http://www.sohu.com/a/162003640_465944 在上一篇文章“”中,我们已经了解如何在Docker上从头构建一个Keras的运行平台,搭建基础的深度学习环...
  • lovebyz
  • lovebyz
  • 2017-09-08 16:37
  • 865

【object detection】Faster RCNN 实践篇 - 使用 resnet 做预训练,Kitti 数据集做 fine-tuning,训练一个目标检测模型

本文主要整理了Faster-RCNN的实践。最近在github上找到一位乐于开源的大佬,这个大佬主要也是使用tensorflow和keras框架实现一些深度学习的案例。其中,本文的Faster-RCN...
  • Houchaoqun_XMU
  • Houchaoqun_XMU
  • 2017-11-26 14:51
  • 742

使用Faster-Rcnn进行目标检测(实践篇)

原理上一篇文章,已经说过了,大家可以参考一下,Faster-Rcnn进行目标检测(原理篇)实验我使用的代码是python版本的Faster Rcnn,官方也有Matlab版本的,链接如下:py-fas...
  • Gavin__Zhou
  • Gavin__Zhou
  • 2016-07-28 10:42
  • 36778

【目标检测】Faster RCNN算法详解

本文转自:http://blog.csdn.net/shenxiaolu1984/article/details/51152614 Ren, Shaoqing, et al. “Fast...
  • lanyuxuan100
  • lanyuxuan100
  • 2017-12-11 07:31
  • 75

Faster-rcnn数据准备过程

mask-rcnn数据出来流程: main():             -----------------load_coco():----加载标签数据标号、图像标号、类别标号及相互映射关系  ...
  • lanyuxuan100
  • lanyuxuan100
  • 2017-12-18 15:49
  • 101

Faster-rcnn 计算mAP程序精简版

由于Faster-rcnn里的计算mAP程序里面有很多嵌套,移植到自己的卷积网络框架下很麻烦,所以把这些嵌套都整合起来方便使用,整合之后的程序只包括test_net.py和voc_eval.py 下...
  • majinlei121
  • majinlei121
  • 2017-12-28 23:14
  • 87

Faste R-CNN的安装及测试

一、拉取源码下载 fast-rcnn因下载解压后 caffe-fast-rcnn是空文件夹,故需要单独下 caffe-fast-rcnn-bcd9b4eadc7d8fbc433aeefd564e82...
  • jiandanjinxin
  • jiandanjinxin
  • 2017-03-10 09:29
  • 1088

深度学习之CNN二 RCNN系列

RCNN:http://blog.csdn.net/hjimce/article/details/50187029 SSPNet:http://blog.csdn.net/hjimce/article...
  • poorfriend
  • poorfriend
  • 2016-06-07 15:56
  • 2544

tf-faster-rcnn代码理解之trianval_net.py

原始工程代码是通过tf-faster-rcnn\experiments\scripts目录下的train_faster_rcnn.sh调用tf-faster-rcnn\tools\trainval_n...
  • jialilian5181
  • jialilian5181
  • 2017-11-19 21:00
  • 101

Fast R-CNN另解

Fast R-CNN 首先声明:本文很多内容来自两个博客: RCNN, Fast-RCNN, Faster-RCNN的一些事目标检测--从RCNN到Faster RCNN 串烧 。 先回归...
  • mydear_11000
  • mydear_11000
  • 2017-03-27 14:04
  • 216
    个人资料
    • 访问:343191次
    • 积分:3468
    • 等级:
    • 排名:第11126名
    • 原创:102篇
    • 转载:10篇
    • 译文:2篇
    • 评论:184条
    博客专栏
    最新评论