关闭

朴素贝叶斯方法

标签: data mining 贝叶斯
352人阅读 评论(1) 收藏 举报
分类:


给出新一天的气象指标数据:sunny,cool,high,TRUE,判断一下会不会去打球

outlook temperature humidity windy play
sunny hot high FALSE no
sunny hot high TRUE no
overcast hot high FALSE yes
rainy mild high FALSE yes
rainy cool normal FALSE yes
rainy cool normal TRUE no
overcast cool normal TRUE yes
sunny mild high FALSE no
sunny cool normal FALSE yes
rainy mild normal FALSE yes
sunny mild normal TRUE yes
overcast mild high TRUE yes
overcast hot normal FALSE yes
rainy mild high TRUE no
朴素贝叶斯模型有两个假设:所有变量对分类均是有用的,即输出依赖于所有的属性;这些变量是相互独立的,即不相关的。之所以称为“朴素”,就是因为这些假设从未被证实过。

step1.对每项指标分别统计:在不同的取值下打球和不打球的次数。

table 2

outlook temperature humidity windy play
  yes no   yes no   yes no   yes no yes no
sunny 2 3 hot 2 2 high 3 4 FALSE 6 2 9 5
overcast 4 0 mild 4 2 normal 6 1 TRUR 3 3    
rainy 3 2 cool 3 1                

step2.分别计算在给定“证据”下打球和不打球的概率。

这里我们的“证据”就是sunny,cool,high,TRUE,记为E,E1=sunny,E2=cool,E3=high,E4=TRUE。

A、B相互独立时,由:

得贝叶斯定理:

得:

又因为4个指标是相互独立的,所以

我们只需要比较P(yes|E)和P(no|E)的大小,就可以决定打不打球了。所以分母P(E)实际上是不需要计算的。

P(yes|E)*P(E)=2/9×3/9×3/9×3/9×9/14=0.0053

P(no|E)*P(E)=3/5×1/5×4/5×3/5×5/14=0.0206

所以不打球的概率更大。

零频问题

注意table 2中有一个数据为0,这意味着在outlook为overcast的情况下,不打球和概率为0,即只要为overcast就一定打球,这违背了朴素贝叶斯的基本假设:输出依赖于所有的属性。

数据平滑的方法很多,最简单最古老的是拉普拉斯估计(Laplace estimator)--即为table2中的每个计数都加1。它的一种演变是每个计数都u(0<u<1)。

Good-Turing是平滑算法中的佼佼者,有兴趣的可以了解下。我在作基于隐马尔可夫的词性标注时发现Good-Turing的效果非常不错。
对于任何发生r次的事件,都假设它发生了r*次:

nr是历史数据中发生了r次的事件的个数。

数值属性

当属性的取值为连续的变量时,称这种属性为“数值属性“。通常我们假设数值属性的取值服从正态分布。

outlook temperature humidity windy play
  yes no   yes no   yes no   yes no yes no
sunny 2 3   83 85   86 85 FALSE 6 2 9 5
overcast 4 0   70 80   96 90 TRUR 3 3    
rainy 3 2   68 65   80 70          
        64 72   65 95          
        69 71   70 91          
        75     80            
        75     70            
        72     90            
        81     75            
sunny 2/9 3/5 mean value 73 74.6 mean value 79.1 86.2 FALSE 6/9 2/5 9/15 5/14
overcast 4/9 0/5 deviation 6.2 7.9 deviation 10.2 9.7 TRUR 3/9 3/5    

正态分布的概率密度函数为:

现在已知天气为:outlook=overcast,temperature=66,humidity=90,windy=TRUE。问是否打球?

f(温度=66|yes)=0.0340

f(湿度=90|yes)=0.0221

yes的似然=2/9×0.0340×0.0221×3/9×9/14=0.000036

no的似然=3/5×0.0291×0.0380×3/5×9/14=0.000136

不打球的概率更大一些。

用于文本分类

朴素贝叶斯分类是一种基于概率的有导师分类器。

词条集合W,文档集合D,类别集合C。

 根据(1)式(去掉分母)得文档d属于类别cj的概率为:

p(cj)表示类别j出现的概率,让属于类别j的文档数量除以总文档数量即可。

而已知类别cj的情况下词条wt出现的后验概率为:类别cj中包含wt的文档数目  除以 类别cj中包含的文档总数目 。


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:3094次
    • 积分:74
    • 等级:
    • 排名:千里之外
    • 原创:4篇
    • 转载:3篇
    • 译文:0篇
    • 评论:1条
    文章分类
    文章存档
    最新评论