关闭

朴素贝叶斯算法

1.朴素贝叶斯算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类别问题 缺点:对输入数据的准备方式敏感 适用数据类型:标称型数据 2.算法思想:     比如我们想判断一个邮件是不是垃圾邮件,那么我们知道的是这个邮件中的词的分布,那么我们还要知道:垃圾邮件中某些词的出现是多少,就可以利用贝叶斯定理得到。   朴素贝叶斯分类器中的一个假设是:每个特征同等重要 3.算法伪代码计算每个类别中的文档...
阅读(287) 评论(0)

Check the difficulty of problems (概率DP)poj2151

Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7104   Accepted: 3078 Description Organizing a programming contest is not an...
阅读(201) 评论(0)

额.....机器学习初步认知(2017.5)

应该是好久没有更新blog了     所以懒惰是不是好东西啊!!! --------------话不多说  言归正传---------------- AI,也就是人工智能,并不仅仅包括机器学习 其实机器学习并不是多简单的  其中有大量的数学公式 统计学 等等 .... 所以学习方法很重要  不然会有很大的困难 学习目标 学习方针 学习计划 主要是有下面的过程导图...
阅读(156) 评论(0)

层次聚类算法

-*- coding:utf-8 * import numpy def getMax(x, y): if x > y: return x else: return y def getMin(x, y): if x > y: return y else: return x def...
阅读(206) 评论(0)

logistics回归--梯度上升算法以及改进--用于二分类

1.sigmoid函数应用 logistics回归是用来分类的,并且属于监督学习,分类也是仅限于二分类,就是结果非0即1 (这种函数通常称作跃阶函数) 这个时候就出现问题了 01之间的分界点怎么处理? 引入sigmoid函数 图像见下图 2.算法中的数学思想举个引例:求 函数y = -x^2+3x+1 的最大值 很简单 求得导数 y’ = -2x+3 当且仅当x=1.5时函数y取得最大值 然而...
阅读(365) 评论(0)

Kmeans以及优化的二分Kmeans

利用kmeans算法进行非监督分类1.聚类与kmeans 引例:2004美国普选布什51.52% 克里48.48% 实际上,如果加以妥善引导,那么一有小部分人就会转换立场,那么如何找到这一小部分人以及如何在有限预算采取措施吸引他们呢?答案就是聚类(<>第十章) kmeans,k均值算法,属于聚类算法中的一种,属于非监督学习。 聚类中的一个重要的知识就是”簇”,简单说簇就是相似数据的集...
阅读(206) 评论(0)
    个人资料
    • 访问:35355次
    • 积分:1550
    • 等级:
    • 排名:千里之外
    • 原创:115篇
    • 转载:2篇
    • 译文:0篇
    • 评论:7条
    博客专栏