条件数学期望

中秋之际,得留下点东西纪念一下才行。主要说一下条件数学期望(Conditional Expectation)吧。以前本科的时候学过这玩意儿,但是当时理解太肤浅。今天看了一遍别的书,颇有心得。理科生讲究定义明确,概念清晰,下面就从定义开始。


Definition:
    The conditional expectation of X given Y=y is:
    ①E(X|Y=y) = ∑xf(x|y)   for discrete case
    ②E(X|Y=y) = ∫xf(x|y)dx for continuous case
    需要注意的一个问题是,EX是一个数值,而E(X|Y=y)是一个关于y的函数
  
比较:
    EX是对所有ω∈Ω,X(ω)取值全体的加权平均;而E(X|Y=y)是局限在ω∈{ω:Y(ω)=y}时,X(ω)取值局部的加权平均。按照Y的不同取值,整个样本空间Ω被划分为n个互不相容的事件(Ω=∑B(j))。因此E(X|Y=y)是在某一个{B(j),j∈N}上X(ω)的局部加权平均.

 

E(X|Y)引入
    显然E(X|Y=y(1)),E(X|Y=y(2)),....(不能打下标太不方便了,小括号里面的“1”,“2”都是下标,诸君凑合着看吧),依赖于Y=y(j),即依赖于全局样本空间的划分。这样,从样本空间Ω及对ω∈Ω可以变化的观点看,有必要引进一个新的随机变量,记为E(X|Y)。对于这个随机变量E(X|Y),当Y=y时它的取值为E(X|Y=y),称随机变量E(X|Y)为随机变量X关于随机变量Y的条件数学期望。这里借用一本教材上的说法:Before we observe Y,we don't know the value of E(X|Y=y) so it is a random varible which we denote E(X|Y). 随机变量E(X|Y)是随机变量Y的函数,事实上,它只是局部平均{E(X|Y=y(j)),j∈N}的统一表达式。

 

    到这里便很容易想到,EX和E(X|Y)在数学上的关系。由于E(X|Y=y)是一种依赖于Y的分割的局部平均,而EX是全体的平均,那么把E(X|Y)再平均一次,会得到什么呢?由此得到著了名的一个定理,The Rule of Iterated Expectations:
    For random variables X and Y, assuming the expectations exist,we have that
                                      E(E(X|Y))=EX;
    More generally,for any function r(x,y) we have
                                      E(E(r(X,Y)|X))=E(r(X,Y))


    其实这个伟大的定理的背景是极其常见的,真理往往来源于生活。举个例子,如果我们要计算某个年级学生的平均分,有两种方法:
    1.可以把该年级每个学生的成绩∑起来,然后再除以总人数,这是极为常规的方法。该方法对应于计算EX;
    2.我们还可以先计算每个班级的平均分(第一次平均),然后在把每个班级的平均分加起来除以班级数(第二次平均)。这便是E(E(X|Y))。这个例子里面,每个班级相当于Y,计算每个班级的平均分相当于固定一个Y=y去求E(X|Y=y),最后再对班级做平均。
    很显然,用1和2的方法得到的结果是一致的。即E(E(X|Y))=EX!这就是伟大的定理隐含的思想:先局部平均,再整体平均。何等的大众化!这才是伟大的智慧!想起初中班主任的一句话:什么叫公理?就是鸡,狗都知道的东西,比如两点之间直线最短!当然,有了思想之后还必须付诸于公式,必须要以数学的形式表示出来,那就perfect了!

 
    个人认为,只要理解了条件期望局部平均的本质,那一大堆的公式推导就没有任何问题了。无非就是以条件概率密度函数为核心的一堆积分而已。

----------------------------------------------------------------------------------

    在这上面写数学的东西太费力了,大汗都打出来了,强烈呼吁弄点什么word插件之类的东西在这上面。今天主要是因为得知某君在考研数学得了135分后还不知道什么是条件期望(我想这估计就是没得满分的主要原因,哈哈),所以才准备给她上一课。否则,这简直是找罪受啊!

  • 6
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
OU(Ornstein-Uhlenbeck)过程是一种连续时间随机过程,常用于描述具有回归到均值的趋势的现象。它是一种强平稳过程,其数学期望和协方差函数不随时间变化。 假设OU过程由以下随机微分方程描述: dX(t) = θ(μ - X(t))dt + σdW(t) 其中,X(t)是OU过程在时间t的取值,μ是均值,θ是回归速度(回归到均值的速度),σ是扰动项的强度,W(t)是标准布朗运动,即满足dW(t) ~ N(0, dt)的随机过程。 首先,我们来计算OU过程的数学期望和协方差函数。根据随机微分方程,我们可以得到: dX(t) - θμdt = θX(t)dt + σdW(t) 对其两边积分,得到: X(t) = X(0)e^(-θt) + μ(1 - e^(-θt)) + σ∫e^(-θ(t-s))dW(s) 由于标准布朗运动的数学期望为0,因此OU过程的数学期望为: E[X(t)] = μ 而协方差函数为: Cov[X(t), X(s)] = E[(X(t) - μ)(X(s) - μ)] = σ^2/(2θ) * (e^(-θ|t-s|) - e^(-θ(t+s))) 可以看出,OU过程的数学期望和协方差函数都不随时间变化,因此是严平稳过程。 接下来,我们来计算OU过程的条件分布。条件分布表示给定过程在一些时刻的取值,过程在其他时刻的取值的条件概率分布。由于OU过程是严平稳过程,因此其条件分布也是严平稳的。 具体来说,假设我们已知OU过程在时刻0的取值为x0,那么在时刻t的条件分布为: p(X(t)|X(0)=x0) = N(X(t); μ + (x0 - μ)e^(-θt), σ^2/(2θ) * (1 - e^(-2θt))) 其中,N(μ, σ^2)表示均值为μ,方差为σ^2的正态分布。可以看出,条件分布的均值会随着时间的推移逐渐回归到均值μ,方差也会逐渐减小。这与OU过程的回归到均值的趋势是一致的。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值