关闭

POJ-1067 取石子游戏 解题报告

309人阅读 评论(0) 收藏 举报

Description

有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。

Input

输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。

Output

输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。

Sample Input

2 1
8 4
4 7

Sample Output

0
1
0
方法:威佐夫博奕
思路:这就是一道威佐夫博奕问题,如果不用威佐夫的定理,这个题基本无解。。。至少我没想出来,至于威佐夫博奕,请看我的博文,有相关介绍。
算法实现:
#include <stdio.h>
#include<math.h>
int main()
{
	int a,b;
	while(scanf("%d%d",&a,&b)!=EOF)
	{
		if (a > b)
		{
			int temp;
			temp = a;
			a = b;
			b =temp;
		}
		int k = b - a;
		int data = int(k*(1.0+sqrt(5.0))/2.0);
		if (data == a)
			printf("0\n");
		else
			printf("1\n");
	}
	return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:16919次
    • 积分:396
    • 等级:
    • 排名:千里之外
    • 原创:16篇
    • 转载:5篇
    • 译文:0篇
    • 评论:19条
    文章分类
    文章存档
    最新评论