关闭

LightOJ 1045 Digits of Factorial

标签: lightojACM
193人阅读 评论(0) 收藏 举报
分类:

Problemacm.hust.edu.cn/vjudge/problem/visitOriginUrl.action?id=26765

分析:在base进制下,pow ( base , x ) 表示最小的 x+1 位数,pow ( base , x ) -1 表示最大的 x 位数

所以base进制下 x 位数的范围是 [ pow ( base , x-1 ) , pow ( base , x ) ),前闭后开的区间

10进制为例,10^2 = 100是最小的3位数,10^3 = 1000是最小的4位数,10^3 -1 = 999是最大的3位数

所以题目是要求出这个 x,使得 pow ( base , x-1 ) <= n! < pow ( base , x ),即第一个使得 pow ( base , x ) > n! 的x

但是n 最大是1e6,不能真的求 n!,所以取对数,于是变成:x * log ( base ) > log ( n! ) = log(1) + log(2) + … +log(n)

log (base) 除过去得出 x,要向上取整

要注意 n=0 的情况,答案是1

预处理一个装 log( i ) 前缀和的数组,不然会超时

Source code

#include <stdio.h>
#include <math.h>
#define SIZE 1000000
double sum[SIZE+1];
int main()
{
    int iTom,kase;
    for(sum[0]=0,kase=1;kase<=SIZE;kase++)
        sum[kase]=sum[kase-1]+log(kase);
    scanf("%d",&iTom);
    for(kase=1;kase<=iTom;kase++)
    {
        int n,base,out;
        double ans;
        scanf("%d%d",&n,&base);
        if(n<2)
        {
            printf("Case %d: 1\n",kase);
            continue;
        }
        out=ans=sum[n]/log(base);
        ans-=out;
        if(ans>0) out++;
        printf("Case %d: %d\n",kase,out);
    }
    return 0;
}

0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

Leetcode全数字问题

目录 1、编号7 Reverse digits of an integer. 2、编号8 Stringto Integer ATOI 3、编号10 Container With Most Water ...
  • wangxiaojun911
  • wangxiaojun911
  • 2014-02-07 12:05
  • 2660

ACdream区域赛指导赛之手速赛系列(5) 题解

ACdream区域赛指导赛之手速赛系列(5) 题解
  • u010084308
  • u010084308
  • 2014-08-23 14:11
  • 1697

[LeetCode] Plus One - 整数字符转换相加

题目概述:Plus One - 整数加一 Given a non-negative number represented as an array of digits, plus one to the ...
  • Eastmount
  • Eastmount
  • 2015-09-09 05:19
  • 1772

lightoj1045 - Digits of Factorial(数论)

本题的大概题意是说,N是十进制的数,求N!在K进制下的位数。 N的范围虽然不大,才10^6,但是N!却大得惊人。如果直接求N的阶乘,转化为K进制的数再统计位数,理论上运用高精度 算法行得通。但是...
  • u014028317
  • u014028317
  • 2014-03-20 23:07
  • 862

Light 1045 Digits of Factorial 【数论】

题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=120197#problem/UDigits of Factorial Time...
  • qq_33184171
  • qq_33184171
  • 2016-06-30 15:54
  • 181

LightOJ 1035 Intelligent Factorial Factorization

题目链接 http://lightoj.com/volume_showproblem.php?problem=1035 题意:计算N!的素数分解式,N最大100,注意输出格式 #inclu...
  • whyorwhnt
  • whyorwhnt
  • 2012-12-02 20:20
  • 742

POJ 1775 sum of Factorial (数论)

链接:http://poj.org/problem?id=1775 Description John von Neumann, b. Dec. 28, 1903, d. Feb. 8, 1...
  • u012823258
  • u012823258
  • 2014-05-07 16:39
  • 740

how many does the factorial of n(in binary data ) have zero?

how many does the factorial of n(in binary data ) have zero? 个人信息:就读于燕大本科软件工程专业 目前大三; 本人博客:g...
  • cqs_2012
  • cqs_2012
  • 2014-05-06 18:10
  • 721

Prime Factoring The Factorial of an Integer

  • 2008-09-07 23:19
  • 45KB
  • 下载

Count the frequency distribution of units digits

  • 2012-12-13 16:34
  • 695B
  • 下载
    个人资料
    • 访问:29524次
    • 积分:1635
    • 等级:
    • 排名:千里之外
    • 原创:140篇
    • 转载:0篇
    • 译文:0篇
    • 评论:4条
    男默女泪…
    最新评论