关闭

LightOJ 1045 Digits of Factorial

标签: lightojACM
148人阅读 评论(0) 收藏 举报
分类:

Problemacm.hust.edu.cn/vjudge/problem/visitOriginUrl.action?id=26765

分析:在base进制下,pow ( base , x ) 表示最小的 x+1 位数,pow ( base , x ) -1 表示最大的 x 位数

所以base进制下 x 位数的范围是 [ pow ( base , x-1 ) , pow ( base , x ) ),前闭后开的区间

10进制为例,10^2 = 100是最小的3位数,10^3 = 1000是最小的4位数,10^3 -1 = 999是最大的3位数

所以题目是要求出这个 x,使得 pow ( base , x-1 ) <= n! < pow ( base , x ),即第一个使得 pow ( base , x ) > n! 的x

但是n 最大是1e6,不能真的求 n!,所以取对数,于是变成:x * log ( base ) > log ( n! ) = log(1) + log(2) + … +log(n)

log (base) 除过去得出 x,要向上取整

要注意 n=0 的情况,答案是1

预处理一个装 log( i ) 前缀和的数组,不然会超时

Source code

#include <stdio.h>
#include <math.h>
#define SIZE 1000000
double sum[SIZE+1];
int main()
{
    int iTom,kase;
    for(sum[0]=0,kase=1;kase<=SIZE;kase++)
        sum[kase]=sum[kase-1]+log(kase);
    scanf("%d",&iTom);
    for(kase=1;kase<=iTom;kase++)
    {
        int n,base,out;
        double ans;
        scanf("%d%d",&n,&base);
        if(n<2)
        {
            printf("Case %d: 1\n",kase);
            continue;
        }
        out=ans=sum[n]/log(base);
        ans-=out;
        if(ans>0) out++;
        printf("Case %d: %d\n",kase,out);
    }
    return 0;
}

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:17942次
    • 积分:1476
    • 等级:
    • 排名:千里之外
    • 原创:136篇
    • 转载:0篇
    • 译文:0篇
    • 评论:2条
    震惊!他们竟然写这些…
    最新评论