基于用户投票的排名算法(五):威尔逊区间

转载 2012年03月30日 21:37:44

作者: 阮一峰

日期: 2012年3月20日

迄今为止,这个系列都在讨论,如何给出"某个时段"的排名,比如"过去24小时最热门的文章"。

但是,很多场合需要的是"所有时段"的排名,比如"最受用户好评的产品"。

这时,时间因素就不需要考虑了。这个系列的最后两篇,就研究不考虑时间因素的情况下,如何给出排名。

一种常见的错误算法是:

  得分 = 赞成票 - 反对票

假定有两个项目,项目A是60张赞成票,40张反对票,项目B是550张赞成票,450张反对票。请问,谁应该排在前面?按照上面的公式,B会排在前面,因为它的得分(550 - 450 = 100)高于A(60 - 40 = 20)。但是实际上,B的好评率只有55%(550 / 1000),而A为60%(60 / 100),所以正确的结果应该是A排在前面。

Urban Dictionary就是这种错误算法的实例。

  

另一种常见的错误算法是

  得分 = 赞成票 / 总票数

如果"总票数"很大,这种算法其实是对的。问题出在如果"总票数"很少,这时就会出错。假定A有2张赞成票、0张反对票,B有100张赞成票、1张反对票。这种算法会使得A排在B前面。这显然错误。

Amazon就是这种错误算法的实例。

  

那么,正确的算法是什么呢?

我们先做如下设定:

  (1)每个用户的投票都是独立事件。

  (2)用户只有两个选择,要么投赞成票,要么投反对票。

  (3)如果投票总人数为n,其中赞成票为k,那么赞成票的比例p就等于k/n。

如果你熟悉统计学,可能已经看出来了,这是一种统计分布,叫做"二项分布"(binomial distribution)。这很重要,下面马上要用到。

我们的思路是,p越大,就代表这个项目的好评比例越高,越应该排在前面。但是,p的可信性,取决于有多少人投票,如果样本太小,p就不可信。好在我们已经知道,p是"二项分布"中某个事件的发生概率,因此我们可以计算出p的置信区间。所谓"置信区间",就是说,以某个概率而言,p会落在的那个区间。比如,某个产品的好评率是80%,但是这个值不一定可信。根据统计学,我们只能说,有95%的把握可以断定,好评率在75%到85%之间,即置信区间是[75%, 85%]。

这样一来,排名算法就比较清晰了:

  第一步,计算每个项目的"好评率"(即赞成票的比例)。

  第二步,计算每个"好评率"的置信区间(以95%的概率)。

  第三步,根据置信区间的下限值,进行排名。这个值越大,排名就越高。

这样做的原理是,置信区间的宽窄与样本的数量有关。比如,A有8张赞成票,2张反对票;B有80张赞成票,20张反对票。这两个项目的赞成票比例都是80%,但是B的置信区间(假定[75%, 85%])会比A的置信区间(假定[70%, 90%])窄得多,因此B的置信区间的下限值(75%)会比A(70%)大,所以B应该排在A前面。

置信区间的实质,就是进行可信度的修正,弥补样本量过小的影响。如果样本多,就说明比较可信,不需要很大的修正,所以置信区间会比较窄,下限值会比较大;如果样本少,就说明不一定可信,必须进行较大的修正,所以置信区间会比较宽,下限值会比较小。

二项分布的置信区间有多种计算公式,最常见的是"正态区间"(Normal approximation interval),教科书里几乎都是这种方法。但是,它只适用于样本较多的情况(np > 5 且 n(1 − p) > 5),对于小样本,它的准确性很差。

1927年,美国数学家 Edwin Bidwell Wilson提出了一个修正公式,被称为"威尔逊区间",很好地解决了小样本的准确性问题。

  

在上面的公式中,表示样本的"赞成票比例",n表示样本的大小,表示对应某个置信水平的z统计量,这是一个常数,可以通过查表或统计软件包得到。一般情况下,在95%的置信水平下,z统计量的值为1.96。

威尔逊置信区间的均值为

  

它的下限值为

  

可以看到,当n的值足够大时,这个下限值会趋向。如果n非常小(投票人很少),这个下限值会大大小于。实际上,起到了降低"赞成票比例"的作用,使得该项目的得分变小、排名下降。

Reddit的评论排名,目前就使用这个算法。

  

[参考文献]

  * How Not To Sort By Average Rating

(完)

基于用户投票的排名算法:威尔逊区间

迄今为止,这个系列都在讨论,如何给出"某个时段"的排名,比如"过去24小时最热门的文章"。 但是,很多场合需要的是"所有时段"的排名,比如"最受用户好评的产品"。 这时,时间因素就不需要考...
  • a358463121
  • a358463121
  • 2016年04月30日 22:35
  • 1468

基于用户投票的排名算法(五):威尔逊区间

作者: 阮一峰 日期: 2012年3月20日 迄今为止,这个系列都在讨论,如何给出"某个时段"的排名,比如"过去24小时最热门的文章"。 但是,很多场合需要的是"所有时段"的排名,比如"最受...
  • Viidiot
  • Viidiot
  • 2013年09月20日 08:46
  • 1006

威尔逊区间

由于工作原因要使用威尔逊区间来计算POI与TD之间的分数,现在总结一下。 对于召回的一些数据如何给这些数据来排名,然后根据这个排名来显示数据,这就需要使用“威尔逊区间”了。 首先我们讨论的情况是每...
  • w417950004
  • w417950004
  • 2017年12月20日 19:47
  • 113

基于用户投票的排名算法

目录   基于用户投票的排名算法(一):Delicious和Hacker News   基于用户投票的排名算法(二):Reddit   基于用户投票的排名算法(三):Stack Overflow...
  • regnjka
  • regnjka
  • 2014年04月02日 20:28
  • 261

用户投票的排名算法

第一种 新鲜的delicious 新的难以上升, 第二种 上升的hacker P-1/(T+2)^G P投票数,T时间单位为小时,G重力系数一般为1.8(通常取值还有1.5,2....
  • Em_dark
  • Em_dark
  • 2017年03月29日 12:36
  • 250

用户投票排名算法总结

其实这只能算是一个总结,一个读后感外带一点引申。《基于用户投票的排名算法》系列,作者:阮一峰。这个系列的文章确实写得很漂亮,层层深入,引人思考。作者blog: http://www.ruanyi...
  • Snail_Moved_Slowly
  • Snail_Moved_Slowly
  • 2018年02月04日 22:27
  • 13

简评《基于用户投票的排名算法》

最近微博timeline上老是出现一些关于《基于用户投票的排名算法》的讨论,一直没认真读。今天又有人在讨论,花了点时间仔细读了一下,写的真是不错,让我立马有了更新一下自己的空间的冲动。文章的作者是阮一...
  • overstack
  • overstack
  • 2012年11月22日 16:40
  • 536

基于用户投票的排名算法Reddit

基于用户投票的排名算法(二):Reddit (不好意思,这个系列中断了近两周,我会尽快在这几天,把后面几篇写完。) 上一次,我介绍了Hacker News的排名算法。它的特点是用户只能投赞成票,但...
  • Real_Myth
  • Real_Myth
  • 2015年10月08日 16:56
  • 662

基于用户投票的排名算法(二):Reddit

作者: 阮一峰 日期: 2012年3月 7日 (不好意思,这个系列中断了近两周,我会尽快在这几天,把后面几篇写完。) 上一次,我介绍了Hacker News的排名算法。它的特...
  • Viidiot
  • Viidiot
  • 2013年09月19日 17:33
  • 777

编程之美之实时排名算法

参考文献 某海量用户网站,用户拥有积分,积分可能会在使用过程中随时更新。现在要为该网站设计一种算法,在每次用户登录时显示其当前积分排名。用户最大规模为2亿;积分为非负整数,且小于100万。 存储结构...
  • fangjian1204
  • fangjian1204
  • 2014年08月21日 17:42
  • 4914
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:基于用户投票的排名算法(五):威尔逊区间
举报原因:
原因补充:

(最多只允许输入30个字)