POJ1845 A^B的因子和mod 9901

原创 2015年07月07日 19:56:31
题意:A^B的因子和mod 9901
注意两点。A mod 9901==0 和 1的情况。
/*
题意:A^B的因子和mod 9901
注意两点。A mod 9901==0 和 1的情况。
*/
//#include <bits/stdc++.h>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
#define LL long long
#define mod 9901
/*
int pnum=0;
bool isPri[Maxn];int pri[Maxn];
void Prime(int N){
	memset(isPri,true,sizeof(isPri));
	for (int i=2;i<=N;i++){
		if (!isPri[i]) else continue;
		pri[++pnum]=i;
		for (int j=i*i;j<=N;j+=i)
			isPri[j]=false;
	}
}
*/
void exgcd(LL a,LL b,LL &x,LL &y,LL &d){
	if (b==0){
		x=1,y=0,d=a;
		return ;
	}
	exgcd(b,a%b,y,x,d);
	y-=a/b*x;
}
LL Inv(LL a){
	LL x,y,d;
	exgcd(a,mod,x,y,d);
	if (a==mod)
	if (d!=1) return -1;
	return (x%mod +mod)%mod;
}
LL pow2(LL x,LL y){
	if (y==1) return x;
	if (y==0) return 1;
	LL tmp=pow2(x,y/2);
	if (y&1) return tmp*tmp %mod *x %mod;
	else return tmp*tmp %mod;
}
LL work(LL x,LL y){
	if (x==1) return (y+1)%mod;
	if (x==0) return 1;
	LL ret=(pow2(x,y+1)-1) * Inv(x-1) %mod;
	return ret;
}
int a[100],b[100];
int main(){
	LL A,B;
	while (~scanf("%lld%lld",&A,&B)){
		int top=0;
		memset(b,0,sizeof(b));
		for (int i=2;i*i<=A;i++){
			if (A%i==0) a[++top]=i;
			while (A%i==0) A/=i,b[top]++;
		}
		if (A!=1) a[++top]=A,b[top]++,A=1;
		LL ans=1;
		for (int i=1;i<=top;i++){
			LL sum=work(a[i]%mod,B*b[i]);
			ans*=sum;ans%=mod;
		}
		printf("%lld\n",ans);
	}
	return 0;
}

[ACM] POJ 1845 Sumdiv(求A的B次方的所有因子的和,一大堆数学公式...,可做模板)

解题思路: 题意是求A的B次方的所有因子的和。学到了一堆数学公式。。 下面知识点和思路转载于:http://blog.csdn.net/lyy289065406/article/details/664...

poj1845 A^B 的因子和 (逆元)

Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 21310   Accept...
  • update7
  • update7
  • 2017年04月26日 21:20
  • 31148

POJ 1845 Sumdiv (因子和)

Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 15404   Accepted: 3800 ...

poj_1845 Sumdiv(素因子分解+快速幂+约数和+二分求等比数列和)

Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 19949   Accept...

POJ 1845 Sumdiv(求阶乘的因子和)

题目链接:http://poj.org/problem?id=1845

POJ 1845 二分+素因子分解

题意:求a^b的因子的和。 对a进行素因子分解a=p1^k1*p2^k2*...*pn^kn则根据成型函数的性质有s=(1+p1+p1^2+p1^3...p1^(k1*b))*....() 等比数...

poj 1845 Sumdiv(二分递归求等比数列+素因子分解)

题目:http://poj.org/problem?id=1845 Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Sub...

poj-1845 Sumdiv (逆元+费马小定理+因子和)

分析:与hdu 1452很类似,就不详细解释了,详细解释; #include #include #include typedef long long LL; using namespace std ;...

POJ1845 Sumdiv【快速模幂+素因子分解+等比数列+二分法】

问题链接:POJ1845 Sumdiv。 问题简述:参见上述链接。 问题分析:计算a^b的因子数,首先要对a进行因子分解,然后再进行计算。 程序说明:计算过程中用到了快速模幂函数。 题记:(略) ...

POJ 1845 Sumdiv(因子和 大数模 费马小定理)

POJ 1845题目大意 给你A和B(0≤A,B≤50000000)​(0\le A,B\le 50000000)​,定义S为AB​A^B​的所有因子的和,让你输出S mod​mod​ 9901 ...
  • mmy1996
  • mmy1996
  • 2017年02月08日 21:39
  • 122
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ1845 A^B的因子和mod 9901
举报原因:
原因补充:

(最多只允许输入30个字)