关闭

POJ1845 A^B的因子和mod 9901

标签: 数论poj
202人阅读 评论(0) 收藏 举报
分类:
题意:A^B的因子和mod 9901
注意两点。A mod 9901==0 和 1的情况。
/*
题意:A^B的因子和mod 9901
注意两点。A mod 9901==0 和 1的情况。
*/
//#include <bits/stdc++.h>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
#define LL long long
#define mod 9901
/*
int pnum=0;
bool isPri[Maxn];int pri[Maxn];
void Prime(int N){
	memset(isPri,true,sizeof(isPri));
	for (int i=2;i<=N;i++){
		if (!isPri[i]) else continue;
		pri[++pnum]=i;
		for (int j=i*i;j<=N;j+=i)
			isPri[j]=false;
	}
}
*/
void exgcd(LL a,LL b,LL &x,LL &y,LL &d){
	if (b==0){
		x=1,y=0,d=a;
		return ;
	}
	exgcd(b,a%b,y,x,d);
	y-=a/b*x;
}
LL Inv(LL a){
	LL x,y,d;
	exgcd(a,mod,x,y,d);
	if (a==mod)
	if (d!=1) return -1;
	return (x%mod +mod)%mod;
}
LL pow2(LL x,LL y){
	if (y==1) return x;
	if (y==0) return 1;
	LL tmp=pow2(x,y/2);
	if (y&1) return tmp*tmp %mod *x %mod;
	else return tmp*tmp %mod;
}
LL work(LL x,LL y){
	if (x==1) return (y+1)%mod;
	if (x==0) return 1;
	LL ret=(pow2(x,y+1)-1) * Inv(x-1) %mod;
	return ret;
}
int a[100],b[100];
int main(){
	LL A,B;
	while (~scanf("%lld%lld",&A,&B)){
		int top=0;
		memset(b,0,sizeof(b));
		for (int i=2;i*i<=A;i++){
			if (A%i==0) a[++top]=i;
			while (A%i==0) A/=i,b[top]++;
		}
		if (A!=1) a[++top]=A,b[top]++,A=1;
		LL ans=1;
		for (int i=1;i<=top;i++){
			LL sum=work(a[i]%mod,B*b[i]);
			ans*=sum;ans%=mod;
		}
		printf("%lld\n",ans);
	}
	return 0;
}

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:13717次
    • 积分:521
    • 等级:
    • 排名:千里之外
    • 原创:39篇
    • 转载:1篇
    • 译文:0篇
    • 评论:5条
    文章分类
    最新评论