Numpy学习笔记

本文介绍了Numpy这一高性能科学计算和数据分析基础包的核心功能。详细讲述了ndarray对象的基本属性及创建方法,包括array(), zeros(), ones(), empty(), arange(), eye()等。此外还涵盖了索引、切片、转置、通用函数、数据处理和线性代数等方面的知识。

Numpy学习笔记

01 前言

Numpy是高性能科学计算和数据分析的基础包

02 ndarray对象

ndarray是一种多维数组对象,其中的所有元素必须是相同类型的

ndarray对象有以下几个常用的属性:

shape 一个表示各维度大小的元组

dtype 说明数组数据类型的对象

ndim 数组轴的个数

size 数组的元素个数

03 创建ndarray

常见的创建方法有如下几种:

array() 接受一切序列行的对象生成ndarray数组

zeros() 传入一个表示形状的元组,生成全0数组

ones() 传入一个表示形状的元组,生成全1数组

empty() 传入一个表示形状的元组,生成一个没有具体指的元组

tips: zeros_like(),ones_like(),empty_like()以另一个数组为参数,创建对应数组

arange() 类似内置的arange(),生成ndarray

eye() identity() 创建一个正方的N*N单位矩阵

03 索引和切片

与列表最重要的区别在于,数组切片是原始数组的视图,视图上的任何修改都会直接反映到源数组上

若想得到数组副本而非切片,应显示使用复制操作。例如:arr1.copy()

04 数组转置

转置操作返回的是源数组的视图

数组转置有transpose方法,swapaxes方法,T属性

最常用,最简介的还是使用T属性,例如:arr.T

05 通用函数

通用函数是对ndarray数组的数据执行元素级运算的函数

下面整理一些常用的通用函数

abs 计算绝对值

sqrt 计算平方根

square 计算平方

exp 计算指数

sin|cos|tan 三角函数

arcsin|arccos|arctan 反三角函数

add 数组对应元素相加

subtract 数组对应元素相减

mutiply 数组对应元素相乘

divide 除法

06 数据处理

np.where(cond,xarr,yarr) 条件逻辑三元表达式

sum 求和

mean 算术平均数

std|var 标准差,方差

max|min 最大值,最小值

07 线性代数

x.dot(y) | np.dot(x,y) 矩阵乘法

numpy.linalg中有一组标准的矩阵分解运算以及诸如求逆和行列式之类的东西

from numpy.linalg import *

inv 计算矩阵的逆

det 计算矩阵的行列式

dot 矩阵乘法

trace 计算对角线元素的和

eig 计算特征值和特征向量

solve 解线性方程组Ax=b,A为方阵

08 结语

numpy库还有很多知识点,暂时只学了能用的一些,以后再根据需要慢慢补充!

内容概要:本文全面阐述了元宇宙的定义、技术支撑体系、产业生态、区域发展布局及面临的风险与建议。元宇宙是基于5G/6G、人工智能、区块链、VR/AR/MR、数字孪生、云计算等多种数字技术融合发展的新型数字世界,具备虚拟身份、经济系统、社交体系和治理机制等完整要素。文章详细分析了底层技术如5G网络、智能传感、算力基础设施、区块链和人工智能的发展现状与国内外对比,指出我国在部分核心技术上仍存在“卡脖子”问题。同时,梳理了元宇宙四层产业生态(技术层、平台层、交互层、应用层),并展示了其在泛娱乐、工业、城市治理等领域的应用场景。此外,报告还介绍了国内多个重点城市推动元宇宙发展的政策布局,并提出了加强核心技术攻关、升级数字基础设施、拓展应用场景、完善监管体系等发展建议。; 适合人群:政府相关部门决策者、科技企业战略规划人员、信息技术研发人员、高校及科研机构研究人员、对元宇宙产业发展感兴趣的投资者与创业者。; 使用场景及目标:①了解元宇宙的技术架构与关键支撑技术发展现状;②掌握国内外元宇宙产业生态差异与竞争格局;③借鉴各地政府政策布局思路,指导地方产业发展或企业战略制定;④识别元宇宙发展中的风险与挑战,提前布局合规与治理机制。; 阅读建议:建议结合图表与案例重点阅读技术支撑与产业生态章节,关注国内外对比数据以把握技术差距;政策制定者可侧重区域发展与建议部分,企业人士应重点关注应用场景与技术创新方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值