Numpy学习笔记
01 前言
Numpy是高性能科学计算和数据分析的基础包
02 ndarray对象
ndarray是一种多维数组对象,其中的所有元素必须是相同类型的
ndarray对象有以下几个常用的属性:
shape 一个表示各维度大小的元组
dtype 说明数组数据类型的对象
ndim 数组轴的个数
size 数组的元素个数
03 创建ndarray
常见的创建方法有如下几种:
array() 接受一切序列行的对象生成ndarray数组
zeros() 传入一个表示形状的元组,生成全0数组
ones() 传入一个表示形状的元组,生成全1数组
empty() 传入一个表示形状的元组,生成一个没有具体指的元组
tips: zeros_like(),ones_like(),empty_like()以另一个数组为参数,创建对应数组
arange() 类似内置的arange(),生成ndarray
eye() identity() 创建一个正方的N*N单位矩阵
03 索引和切片
与列表最重要的区别在于,数组切片是原始数组的视图,视图上的任何修改都会直接反映到源数组上
若想得到数组副本而非切片,应显示使用复制操作。例如:arr1.copy()
04 数组转置
转置操作返回的是源数组的视图
数组转置有transpose方法,swapaxes方法,T属性
最常用,最简介的还是使用T属性,例如:arr.T
05 通用函数
通用函数是对ndarray数组的数据执行元素级运算的函数
下面整理一些常用的通用函数
abs 计算绝对值
sqrt 计算平方根
square 计算平方
exp 计算指数
sin|cos|tan 三角函数
arcsin|arccos|arctan 反三角函数
add 数组对应元素相加
subtract 数组对应元素相减
mutiply 数组对应元素相乘
divide 除法
06 数据处理
np.where(cond,xarr,yarr) 条件逻辑三元表达式
sum 求和
mean 算术平均数
std|var 标准差,方差
max|min 最大值,最小值
07 线性代数
x.dot(y) | np.dot(x,y) 矩阵乘法
numpy.linalg中有一组标准的矩阵分解运算以及诸如求逆和行列式之类的东西
from numpy.linalg import *
inv 计算矩阵的逆
det 计算矩阵的行列式
dot 矩阵乘法
trace 计算对角线元素的和
eig 计算特征值和特征向量
solve 解线性方程组Ax=b,A为方阵
08 结语
numpy库还有很多知识点,暂时只学了能用的一些,以后再根据需要慢慢补充!
本文介绍了Numpy这一高性能科学计算和数据分析基础包的核心功能。详细讲述了ndarray对象的基本属性及创建方法,包括array(), zeros(), ones(), empty(), arange(), eye()等。此外还涵盖了索引、切片、转置、通用函数、数据处理和线性代数等方面的知识。
3706

被折叠的 条评论
为什么被折叠?



