隐马尔科夫模型前向后向算法

本文是自己学习隐马尔科夫模型的一个总结,为了自己以后方便查阅,也算作是李航老师的《统计学习方法》的一个总结,若有疑问,欢迎讨论。推荐阅读知乎上Yang Eninala写的《如何用简单易懂的例子解释隐马尔可夫模型?》,写的非常好。我会联系两者,来作为自己的一篇学习笔记。隐马尔可夫模型: 隐马尔可夫模型是关于时序的概率模型,描述由一个隐藏的马尔可夫链随机生成不可观测的状态随机序列,再由各个状态生成一个...
阅读(137) 评论(0)

一文总结条件熵、交叉熵、相对熵、互信息

条件熵:H(Y|X)表示在已知随机变量X的条件下,随机变量Y的不确定性,H(Y|X)定义为:举个例子:有一堆西瓜,已知这堆西瓜的色泽,以及每种色泽对应好瓜和坏瓜的个数,如下所示,设X表示色泽,Y表示好瓜或者坏瓜。则:这个例子就是计算条件熵的一个过程,现在证明条件熵公式:有很多书上的条件熵是这么定义的,如果继续化简就可以得到我们上面定义的条件熵,接着化简:得证!信息增益:,表示X出现后随机变量Y的不...
阅读(202) 评论(0)

彻底理解样本方差为何除以n-1

设样本均值为,样本方差为,总体均值为,总体方差为,那么样本方差有如下公式:    很多人可能都会有疑问,为什么要除以n-1,而不是n,但是翻阅资料,发现很多都是交代到,如果除以n,对样本方差的估计不是无偏估计,比总体方差要小,要想是无偏估计就要调小分母,所以除以n-1,那么问题来了,为什么不是除以n-2、n-3等等。所以在这里彻底总结一下,首先交代一下无偏估计。无偏估计    以例子来说明,假如你...
阅读(282) 评论(0)

如何理解用信息熵来表示最短的平均编码长度

之前弄明白了信息熵是什么,由于信息熵来源于信息论,要怎么才能跟编码联系起来呢?这个问题当时没有想明白,今天查了一下资料,理解了一下,做笔记整理一下,如有错误欢迎指正。如果信息熵不明白的请看这里:http://blog.csdn.net/hearthougan/article/details/76192381首先给出结果:最短的平均编码长度 = 信源的不确定程度 / 传输的表达能力。其中信源的不确定...
阅读(133) 评论(0)

白话信息熵

距离有近有远,时间有长有短,温度有高有低,我们知道可以用米或者千米来度量距离,用时分秒可以来度量时间的长短,用摄氏度或者华氏度来度量温度的高低,那么我们常说这个信息多,那个信息少,那么信息的多少用什么度量呢?熵! 信息量是了解一个未知事物需要查询的...
阅读(203) 评论(0)

朴素贝叶斯分类器

分类器就是根据某一事物一系列特征来判断该事物的类别,。其实原理很简单,并不需要什么复杂的训练结构,复杂只是计算量,这个交给计算机即可,所以懂了原理,朴素贝叶斯分类器也就掌握了。先不写理论,以例子开始,希望能说的浅显易懂。 一、西瓜的好坏 这里是要借鉴周志华老师书中西瓜的例子,这个例子也是我所看到的,讲解贝叶斯分类问题最好的例子。现简化如下: 现已知7个西瓜的好坏,西瓜的特征有三种:色泽{青绿...
阅读(290) 评论(0)

浅谈全概率公式和贝叶斯公式

一、条件概率公式 条件概率由文氏图出发,比较容易理解: 表示B发生后A发生的概率,由上图可以看出B发生后,A再发生的概率就是,因此: 由: 得: 这就是条件概率公式。 假如事件A与B相互独立,那么: 注: 相互独立,两个事件表示成文氏图,也可以画成上图形式,相互独立:表示两个事件发生互不影响,因此可以同时发生(这就可能出现相交)。而互斥:...
阅读(298) 评论(1)

卷积神经网络反向传播理论推导

本文首先简单介绍CNN的结构,并不作详细介绍,若需要了解推荐看CS231n课程笔记翻译:卷积神经网络笔记。本文只要讲解CNN的反向传播,CNN的反向传播,其实并不是大多所说的和全连接的BP类似,CNN的全连接部分的BP是与它相同,但是CNN中卷积--池化、池化--卷积部分的BP是不一样的,仔细推导,还是有很多细节地方需要思考的,比如1、在前向传播的过程中,卷积层的输入,是通过卷积核与前一层的输出特...
阅读(999) 评论(3)

人工神经网络

一、神经网络的模型: 图1 两层全连接神经网络模型     这个是一个带有两个全连接层的神经网络,神经网络,一般不把输入层算在层数之中。 1、神经元: 图2 神经元的数学模型     从单个神经元来看,每个神经元可以看做是一个感知机,可以用来做决策,从图中可以看出,根据输入的线性组合,经过函数f来预测,比如Sigmoid函数,当输出值大于0.5的时候可以判定为正类,当输出...
阅读(1144) 评论(0)

线性分类器-KNN、多类SVM、Softmax

本文只是记录一下实现的代码,具体的思想还请看cs231n的课程笔记,其讲解的非常好,智能单元翻译的也很不错。 一、CIFAR-10数据集: 图1 CIFAR-10示例 二、KNN 图2 KNN分类器示例   如图所示,K的取值不同得出来的分类结果也可能是不同的,因此需要对k进行寻参,找出在训练机上最好的k,来进行测试。   求两幅图片的相似性,KNN使用的是距离度量,但...
阅读(383) 评论(0)

支持向量机(SVM)(四)----SMO

我们前几节说了线性可分,以及在低维线性不可分,但是在高维是线性可分的。还有一种情况,如下图:     这种因奇异点而造成的划分平面不合理的移动,不是我们所想的,或者因为个别奇异点导致线性不可分,其余的大部分的点都是线性可分的,如果因此 就映射到高维来解决,那么也不值当,如下的情况:     这些情况因为outliers而造成了线性不可分,或者导致划分超平面不是很明确。同样为了降...
阅读(360) 评论(0)

支持向量机(SVM)(三)----核函数及正则化

上一节最后我们说到我们根据求得的,可求得,,然后求出决策函数,但是我们知道: 是的函数,我们也许不必把带入上式来求解,我们直接把上式带入决策函数可有:     假如我们已经求得最优的,在作出预测的时候,我们可以只进行输入数据x与训练样本的内积即可。在转化为对偶条件的时候,我们知道要满足KKT条件,KKT条件中有一个是: 其中:      由此可以...
阅读(814) 评论(0)

支持向量机(SVM)(二)----对偶

==============================================     本文根据Andrew NG的课程来梳理一下svm的思路。如有错误,欢迎指正。 ==============================================     上小节,我们说到如何求该凸优化问题,高数中我们学过,可以利用拉格朗日乘子法,来求解有约束的问题。原问题为...
阅读(272) 评论(0)

KNN算法及其实现

K-邻近算法(k-NearestNeighbor,KNN),存在某一样本集,已经知道样本和对应的类别,当输入一个没有类别标识的数据时,找出与其“最相似”的K个样本,在这k个样本中,哪个类别的样本个数最多,我们就把该未知数据的类别归为此类。其中的相似性,可以利用距离来度量,而衡量距离的方法,可以是欧氏距离,闵可夫斯基距离,曼哈顿距离等等。     KNN算法步骤:     1,与处理数据...
阅读(228) 评论(0)

主成分分析(PCA)

当我们研究某个问题的时候,该问题有很多个变量,而且某些变量与变量之间存在一定的相关关系,如果两个变量存在相关关系,那么这两个变量之间存在着重叠信息,而这就造成了数据的冗余。比如一群学生,Boy和Girl,他们的性别我们可以用二维数组来表示,对于某个学生,Boy 可表示成:[1][0],Girl可表示为[0][1],其实不必,我们可以用一维数组来表示,男生为1,女孩为0。我们为了除去一组变量的相关性...
阅读(227) 评论(0)
20条 共2页1 2 下一页 尾页
    个人资料
    • 访问:280286次
    • 积分:7304
    • 等级:
    • 排名:第3352名
    • 原创:471篇
    • 转载:19篇
    • 译文:0篇
    • 评论:18条