Python 爬虫笔记(2)

我们如何使用Python而不是浏览器,利用有道翻译,来翻译文本?   我们首先打开有道,右键,点击“检查”,或者“审查元素”,我们可以看到网页的源代码,如图1所示:   我们点击network,如图2:   找到translate?....如图3,然后点击:   然后在点击preview,如图4,我们可以看到我们要翻译的语句,和翻译的结果。   我...
阅读(183) 评论(0)

Python 爬虫笔记(1)

import urllib.request 访问网址,打开网页,方法: urllib.request.urlopen(url, data=None, [timeout, ]*, cafile=None, capath=None, cadefault=False, context=None) 其中url,可以是一个字符串string(也就是网址),也可以是一个Request对象...
阅读(347) 评论(0)

Python 画二维和三维散点同心圆

我们利用Python先画二维的散点圆:   我们的圆上的点,采取圆的参数方程来取。我们根据取theta的步长来决定圆上的散点的松散度。 import numpy as np import matplotlib.pyplot as plt r = 1.0 a, b = (0., 0.) theta = np.arange(0, 2*np.pi, 0.3) x = a + r * np.cos...
阅读(563) 评论(0)

开关电灯(济南联通面试题)

今天有个同学面试联通问了我一个面试题,貌似这个题当过很多面试题,不难,随手记录一下吧。 题目描述:     有N个灯放在一起,从1到N依次顺序编号,有N个人也从1到N依次编号。1号将灯全部熄灭,2号将,凡是2的倍数的灯打开;3号将凡是3的倍数的灯作相反处理(该灯如为打开,则将他关闭;如果关闭,则将它打开)。以后的人都和3号一样,将凡是自己编号倍数的灯作相反处理。 编程实现:第N个人操作后...
阅读(118) 评论(0)

支持向量机(SVM)(四)----SMO

我们前几节说了线性可分,以及在低维线性不可分,但是在高维是线性可分的。还有一种情况,如下图:     这种因奇异点而造成的划分平面不合理的移动,不是我们所想的,或者因为个别奇异点导致线性不可分,其余的大部分的点都是线性可分的,如果因此 就映射到高维来解决,那么也不值当,如下的情况:     这些情况因为outliers而造成了线性不可分,或者导致划分超平面不是很明确。同样为了降...
阅读(271) 评论(0)

支持向量机(SVM)(三)----核函数及正则化

上一节最后我们说到我们根据求得的,可求得,,然后求出决策函数,但是我们知道: 是的函数,我们也许不必把带入上式来求解,我们直接把上式带入决策函数可有:     假如我们已经求得最优的,在作出预测的时候,我们可以只进行输入数据x与训练样本的内积即可。在转化为对偶条件的时候,我们知道要满足KKT条件,KKT条件中有一个是: 其中:      由此可以...
阅读(589) 评论(0)

支持向量机(SVM)(二)----对偶

==============================================     本文根据Andrew NG的课程来梳理一下svm的思路。如有错误,欢迎指正。 ==============================================     上小节,我们说到如何求该凸优化问题,高数中我们学过,可以利用拉格朗日乘子法,来求解有约束的问题。原问题为...
阅读(223) 评论(0)

支持向量机(SVM)(一)----介绍SVM

=========================================     本文根据Andrew NG的课程来梳理一下svm的思路。如有错误,欢迎指正。 ==============================================     支持向量机(Support Vector Machine,SVM)是一个有监督的学习模型,通常用来进行模式识别、分类以及回...
阅读(345) 评论(0)

KNN算法及其实现

K-邻近算法(k-NearestNeighbor,KNN),存在某一样本集,已经知道样本和对应的类别,当输入一个没有类别标识的数据时,找出与其“最相似”的K个样本,在这k个样本中,哪个类别的样本个数最多,我们就把该未知数据的类别归为此类。其中的相似性,可以利用距离来度量,而衡量距离的方法,可以是欧氏距离,闵可夫斯基距离,曼哈顿距离等等。     KNN算法步骤:     1,与处理数据...
阅读(194) 评论(0)

python sort、sorted高级排序技巧

这篇文章主要介绍了python sort、sorted高级排序技巧,本文讲解了基础排序、升序和降序、排序的稳定性和复杂排序、cmp函数排序法等内容,需要的朋友可以参考下 Python list内置sort()方法用来排序,也可以用python内置的全局sorted()方法来对可迭代的序列排序生成新的序列。 1)排序基础 简单的升序排序是非常容易的。只需要调用s...
阅读(271) 评论(0)

主成分分析(PCA)

当我们研究某个问题的时候,该问题有很多个变量,而且某些变量与变量之间存在一定的相关关系,如果两个变量存在相关关系,那么这两个变量之间存在着重叠信息,而这就造成了数据的冗余。比如一群学生,Boy和Girl,他们的性别我们可以用二维数组来表示,对于某个学生,Boy 可表示成:[1][0],Girl可表示为[0][1],其实不必,我们可以用一维数组来表示,男生为1,女孩为0。我们为了除去一组变量的相关性...
阅读(172) 评论(0)
    个人资料
    • 访问:254804次
    • 积分:7043
    • 等级:
    • 排名:第3348名
    • 原创:471篇
    • 转载:19篇
    • 译文:0篇
    • 评论:16条