人工神经网络

一、神经网络的模型: 图1 两层全连接神经网络模型     这个是一个带有两个全连接层的神经网络,神经网络,一般不把输入层算在层数之中。 1、神经元: 图2 神经元的数学模型     从单个神经元来看,每个神经元可以看做是一个感知机,可以用来做决策,从图中可以看出,根据输入的线性组合,经过函数f来预测,比如Sigmoid函数,当输出值大于0.5的时候可以判定为正类,当输出...
阅读(952) 评论(0)

numpy.transpose()

numpy.transpose()是对矩阵按照所需的要求的转置,比较难理解,现以例子来说明: import numpy as np a = np.array(range(30)).reshape(2, 3, 5) print ("a = ") print (a) print "\n=====================\n" print ("a.transpose() = ") pr...
阅读(346) 评论(0)

线性分类器-KNN、多类SVM、Softmax

本文只是记录一下实现的代码,具体的思想还请看cs231n的课程笔记,其讲解的非常好,智能单元翻译的也很不错。 一、CIFAR-10数据集: 图1 CIFAR-10示例 二、KNN 图2 KNN分类器示例   如图所示,K的取值不同得出来的分类结果也可能是不同的,因此需要对k进行寻参,找出在训练机上最好的k,来进行测试。   求两幅图片的相似性,KNN使用的是距离度量,但...
阅读(276) 评论(0)

python nditer---迭代数组

迭代对象nditer提供了一种灵活访问一个或者多个数组的方式。 单个数组的迭代(Single Array Iteration): 迭代器最基本的任务的可以完成对数组元素的访问,迭代器接口可以一个接一个地提供的每一个元素。 例如: a = np.arange(6).reshape(2, 3) for x in np.nditer(a): print x, " " 0 1 2 3...
阅读(804) 评论(0)

numpy.random

1、numpy.random.rand(d0, d1, ....dn):     生成指定形状的数组,其元素值是在均匀分布[0, 1]之间随机生成,其中d0, ...dn表示的是数组的大小,如果不指定大小,默认返回一个随机数值。数组默认的返回类型是float. 例如: w0 = np.random.rand() print w0, "\n" w00 = np.random.rand(2, ...
阅读(178) 评论(0)
    个人资料
    • 访问:254804次
    • 积分:7043
    • 等级:
    • 排名:第3348名
    • 原创:471篇
    • 转载:19篇
    • 译文:0篇
    • 评论:16条