# POJ 1273 Drainage Ditches

110人阅读 评论(0)

Drainage Ditches
 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 64253 Accepted: 24793

Description

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10


Sample Output

50

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <queue>
using namespace std;
#define maxn 250
#define INF 0x3f3f3f3f
int flow[maxn][maxn],a[maxn],p[maxn];
// flow 是流量，cap是容量，a[i]表示源点s到节点i的路径上的最小残留量
int cap[maxn][maxn];

int min(int a,int b){
return a>b?b:a;
}

int m;

void EK(int st,int end){
int u,v,i;
int sum = 0;
queue<int > q;
memset(flow,0,sizeof(flow));
memset(p,0,sizeof(p));
while(1){
memset(a,0,sizeof(a));
a[st] = INF;
q.push(st);
while(!q.empty()){
u = q.front();
q.pop();
for(v=1;v<=m;v++){  // 没有连通的点flow[u][v]==cap[u][v]==0
if(!a[v] && flow[u][v]<cap[u][v]){  //每次a[i]都会被初始化为0，当不为0的时候，就相当于被标记过了
p[v] = u;
q.push(v);
a[v] = min(a[u],cap[u][v]-flow[u][v]);  // u是v的前驱节点，用前驱和当前比较，取小的那一个
}
}
}
if(a[m]==0) // 找不到增广路，说明已经是最大流
break;
sum+=a[m];  //每一次都能找到一条增广路，只有一条哦，所以sum+=a[m]，每次只加一次是可行的
for(i=m;i!=st;i=p[i]){
flow[p[i]][i] += a[m];
flow[i][p[i]] -= a[m];  // 将来作比较的时候，用cap[u][v](==0) - flow[u][v](<0) 得到的仍然是一个正数。
//后向弧为算法纠正自己所犯的错误提供了可能性，它允许算法取消先前的错误的行为
}
}
printf("%d\n",sum);
}

int main(){
int i,j,k,t,n;
int st,end,w;
while(scanf("%d%d",&n,&m)!=EOF){
memset(cap,0,sizeof(cap));
while(n--){
scanf("%d%d%d",&st,&end,&w);
cap[st][end] += w;
}
EK(1,m); // 分别是源点和汇点
}
return 0;
}

0
0

【直播】机器学习&数据挖掘7周实训--韦玮
【套餐】系统集成项目管理工程师顺利通关--徐朋
【直播】3小时掌握Docker最佳实战-徐西宁
【套餐】机器学习系列套餐（算法+实战）--唐宇迪
【直播】计算机视觉原理及实战--屈教授
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之矩阵--黄博士
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之凸优化--马博士
【套餐】Javascript 设计模式实战--曾亮

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：4313次
• 积分：297
• 等级：
• 排名：千里之外
• 原创：26篇
• 转载：4篇
• 译文：0篇
• 评论：1条
阅读排行
最新评论