关闭

记忆化搜索专题--nkoj3698方块消除

115人阅读 评论(0) 收藏 举报
分类:
P3698方块消除
时间限制 : - MS   空间限制 : 65536 KB 
评测说明 : 时限1000ms
问题描述

有n个带颜色的方块排成一排,相同颜色的方块连成一段同色区域,如下图所示:


游戏时,玩家可以任选一段同色区域,将其消去。设消去的这段包含x个相同颜色的方块,则此次消除操作的得分为x^2。然后右边的所有方块会往左边合拢。
如下图所示:

第一步将白色一段消除,得分16;
第二步将褐色一段消除,得分9;
第三步将橙色一段消除,得分4;
总分29
你的任务是对于给定的一排方块,计算消除它们能得到的最大得分。

输入格式

第一行,一个整数n
第二行,描述初始状态的一排方块,由n个空格间隔的整数表示,每个整数表示一种颜色。整数的范围在[1,n]

输出格式

一行,一个整数,表示最大得分

样例输入 1

9
1 2 2 2 2 3 3 3 1

样例输出 1

29

样例输入 2

8
1 2 2 3 1 3 2 1

样例输出 2

18

提示  1<=n<=200


#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<cstring>
using namespace std;
int n;
int f[205][205][205];
bool mark[205][205][205];
int a[205];
int dp(int l,int r,int k){
	if(l>r)return 0;
	if(mark[l][r][k])return f[l][r][k];
	mark[l][r][k]=true;
	if(l==r)return f[l][r][k]=(1+k)*(1+k);
	int i,j,p=r,q;
	while(a[p]==a[r])p--;
	p++;
	f[l][r][k]=max(f[l][r][k],dp(l,p-1,0)+(r-p+1+k)*(r-p+1+k));
	for(q=l;q<p;q++){
		if(a[q]==a[r]&&a[q]!=a[q+1]){
			f[l][r][k]=max(f[l][r][k],dp(q+1,p-1,0)+dp(l,q,r-p+1+k));
		}
	}
	return f[l][r][k];
}
int main(){
	int i,j;
	cin>>n;
	for(i=1;i<=n;i++)cin>>a[i];
	for(i=0;i<=n;i++)f[i][i][0]=1;
	cout<<dp(1,n,0);
}











0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:36388次
    • 积分:2231
    • 等级:
    • 排名:第16918名
    • 原创:195篇
    • 转载:1篇
    • 译文:0篇
    • 评论:8条