有序数组中找中位数

转载 2016年05月31日 22:16:40

原文:Median of two sorted arrays

题目:两个有序数组A和B,大小都是n,寻找这两个数组合并后的中位数。时间复杂度为O(logn)。
中位数:如果数组的个数是奇数,那么中位数的值就是有序时处于中间的数;如果数组个数是偶数的,那么就是有序时中间两个数的平均值。

方法一:合并时计数

使用Merge Sort时的Merge操作,比较两个数组时候计数,当计数达到n时,就可以得到中位数,在归并的数组中,中位数为下标n-1和n的两个数的平均值。
时间复杂度O(n)。

#include <stdio.h>      
  
/*  
This function returns median of ar1[] and ar2[].     
Assumptions in this function:     
Both ar1[] and ar2[] are sorted arrays     
Both have n elements  
*/  
int getMedian(int ar1[], int ar2[], int n)   
{  
    int i = 0;  /* Current index of i/p array ar1[] */      
    int j = 0; /* Current index of i/p array ar2[] */      
    int count;       
    int m1 = -1, m2 = -1;        
   
    /* Since there are 2n elements, median will be average of elements at index n-1 and n  
    in the array obtained after merging ar1 and ar2 */      
    for (count = 0; count <= n; count++)       
    {           
        /*Below is to handle case where all elements of ar1[] are smaller than smallest(or first) element of ar2[]*/          
        if (i == n)           
        {               
            m1 = m2;               
            m2 = ar2[0];             
            break;         
        }           
        /*Below is to handle case where all elements of ar2[] are smaller than smallest(or first) element of ar1[]*/          
        else if (j == n)           
        {      
            m1 = m2;    
            m2 = ar1[0];    
            break;          
        }          
        if (ar1[i] < ar2[j])      
        {    
            m1 = m2;  /* Store the prev median */              
            m2 = ar1[i];               
            i++;          
        }          
        else         
        {            
            m1 = m2;  /* Store the prev median */            
            m2 = ar2[j];            
            j++;         
        }      
    }        
    return (m1 + m2)/2;   
}     
  
/* Driver program to test above function */  
int main()   
{      
    int ar1[] = {1, 12, 15, 26, 38};       
    int ar2[] = {2, 13, 17, 30, 45};        
    int n1 = sizeof(ar1)/sizeof(ar1[0]);      
    int n2 = sizeof(ar2)/sizeof(ar2[0]);      
    if (n1 == n2)         
        printf("Median is %d", getMedian(ar1, ar2, n1));      
    else         
        printf("Doesn't work for arrays of unequal size");    
  
    return 0;  
}

方法二:比较两个数组的中位数

ar1[]和ar2[]为输入的数组

算法过程:

1.得到数组ar1和ar2的中位数m1和m2

2.如果m1==m2,则完成,返回m1或者m2

3.如果m1>m2,则中位数在下面两个子数组中

a) From first element of ar1 to m1 (ar1[0...|_n/2_|])
b) From m2 to last element of ar2 (ar2[|_n/2_|...n-1])

4.如果m1<m2,则中位数在下面两个子数组中

a) From m1 to last element of ar1 (ar1[|_n/2_|...n-1])
b) From first element of ar2 to m2 (ar2[0...|_n/2_|])

5.重复上面的过程,直到两个子数组的大小都变成2

6.如果两个子数组的大小都变成2,使用下面的式子得到中位数:Median = (max(ar1[0], ar2[0]) + min(ar1[1], ar2[1]))/2

时间复杂度:O(logn)。

#include <stdio.h>      
  
/* Utility functions */  
int max(int x, int y)   
{       
    return x > y? x : y;  
}    
  
int min(int x, int y)  
{     
    return x > y? y : x;   
}  
  
/* Function to get median of a sorted array */  
int median(int arr[], int n)   
{     
    if (n%2 == 0)         
        return (arr[n/2] + arr[n/2-1])/2;      
    else        
        return arr[n/2];   
}    
  
/*  
This function returns median of ar1[] and ar2[].     
Assumptions in this function:   
Both ar1[] and ar2[] are sorted arrays    
Both have n elements 
*/  
int getMedian(int ar1[], int ar2[], int n)   
{   
    int m1; /* For median of ar1 */    
    int m2; /* For median of ar2 */      
  
    /* return -1  for invalid input */   
    if (n <= 0)         
        return -1;      
    if (n == 1)        
        return (ar1[0] + ar2[0])/2;      
    if (n == 2)        
        return (max(ar1[0], ar2[0]) + min(ar1[1], ar2[1])) / 2;    
  
    m1 = median(ar1, n); /* get the median of the first array */    
    m2 = median(ar2, n); /* get the median of the second array */  
        
    /* If medians are equal then return either m1 or m2 */      
    if (m1 == m2)         
        return m1;         
  
    /* if m1 < m2 then median must exist in ar1[m1....] and ar2[....m2] */    
    if (m1 < m2)    
    {         
        if (n % 2 == 0)            
            return getMedian(ar1 + n/2 - 1, ar2, n - n/2 +1);        
        else        
            return getMedian(ar1 + n/2, ar2, n - n/2);     
    }        
  
    /* if m1 > m2 then median must exist in ar1[....m1] and ar2[m2...] */      
    else     
    {      
        if (n % 2 == 0)          
            return getMedian(ar2 + n/2 - 1, ar1, n - n/2 + 1);          
        else            
            return getMedian(ar2 + n/2, ar1, n - n/2);      
    }   
}   
  
/* Driver program to test above function */  
int main()   
{      
    int ar1[] = {1, 2, 3, 6};    
    int ar2[] = {4, 6, 8, 10};    
    int n1 = sizeof(ar1)/sizeof(ar1[0]);    
    int n2 = sizeof(ar2)/sizeof(ar2[0]);      
    if (n1 == n2)      
        printf("Median is %d", getMedian(ar1, ar2, n1));     
    else      
        printf("Doesn't work for arrays of unequal size");     
  
    return 0;   
}

方法三:通过二分查找法来找中位数

基本思想是:假设ar1[i]是合并后的中位数,那么ar1[i]大于ar1[]中前i-1个数,且大于ar2[]中前j=n-i-1个数。通过ar1[i]和ar2[j]、ar2[j+1]两个数的比较,在ar1[i]的左边或者ar1[i]右边继续进行二分查找。对于两个数组 ar1[] 和ar2[], 先在 ar1[] 中做二分查找。如果在ar1[]中没找到中位数, 继续在ar2[]中查找。

算法流程:
1) 得到数组ar1[]最中间的数,假设下标为i.
2) 计算对应在数组ar2[]的下标j,j = n-i-1 
3) 如果 ar1[i] >= ar2[j] and ar1[i] <= ar2[j+1],那么 ar1[i] 和 ar2[j] 就是两个中间元素,返回ar2[j] 和 ar1[i] 的平均值
4) 如果 ar1[i] 大于 ar2[j] 和 ar2[j+1] 那么在ar1[i]的左部分做二分查找(i.e., arr[left ... i-1])
5) 如果 ar1[i] 小于 ar2[j] 和 ar2[j+1] 那么在ar1[i]的右部分做二分查找(i.e., arr[i+1....right])
6) 如果到达数组ar1[]的边界(left or right),则在数组ar2[]中做二分查找

时间复杂度:O(logn)。

#include <stdio.h>      
  
/* A recursive function to get the median of ar1[] and ar2[] using binary search */  
int getMedianRec(int ar1[], int ar2[], int left, int right, int n)   
{      
    int i, j;   
  
    /* We have reached at the end (left or right) of ar1[] */    
    if(left > right)        
        return getMedianRec(ar2, ar1, 0, n-1, n);    
  
    i = (left + right)/2;      
    j = n - i - 1;  /* Index of ar2[] */      
  
    /* Recursion terminates here.*/     
    if (ar1[i] > ar2[j] && (j == n-1 || ar1[i] <= ar2[j+1]))     
    {        
        /*ar1[i] is decided as median 2, now select the median 1         
        (element just before ar1[i] in merged array) to get the average of both*/     
        if (ar2[j] > ar1[i-1] || i == 0)          
            return (ar1[i] + ar2[j])/2;        
        else            
            return (ar1[i] + ar1[i-1])/2;    
    }  
  
    /*Search in left half of ar1[]*/     
    else if (ar1[i] > ar2[j] && j != n-1 && ar1[i] > ar2[j+1])       
        return getMedianRec(ar1, ar2, left, i-1, n);     
  
    /*Search in right half of ar1[]*/      
    else /* ar1[i] is smaller than both ar2[j] and ar2[j+1]*/    
        return getMedianRec(ar1, ar2, i+1, right, n);   
}  
  
/*  
This function returns median of ar1[] and ar2[].     
Assumptions in this function:    
Both ar1[] and ar2[] are sorted arrays   
Both have n elements  
*/  
int getMedian(int ar1[], int ar2[], int n)   
{     
    // If all elements of array 1 are smaller then     
    // median is average of last element of ar1 and first element of ar2      
    if (ar1[n-1] < ar2[0])      
        return (ar1[n-1]+ar2[0])/2;       
  
    // If all elements of array 1 are smaller then       
    // median is average of first element of ar1 and       
    // last element of ar2      
    if (ar2[n-1] < ar1[0])      
        return (ar2[n-1]+ar1[0])/2;    
    
    return getMedianRec(ar1, ar2, 0, n-1, n);   
}  
  
/* Driver program to test above function */  
int main()   
{     
    int ar1[] = {1, 12, 15, 26, 38};   
    int ar2[] = {2, 13, 17, 30, 45};    
    int n1 = sizeof(ar1)/sizeof(ar1[0]);     
    int n2 = sizeof(ar2)/sizeof(ar2[0]);     
    if (n1 == n2)        
        printf("Median is %d", getMedian(ar1, ar2, n1));      
    else       
        printf("Doesn't work for arrays of unequal size");    
  
    return 0;   
}

相关文章推荐

两个有序数组合并后找第k个数(中位数)

原文链接:http://m.blog.csdn.net/blog/fangkyo/8114784 经常有同学在面试或者笔试的时候遇到两个有序数组(未必等长)找第k个数的问题。归并比较的方法固然可...

有序数组求中位数问题

1、有两个已排好序的数组A和B,长度均为n,找出这两个数组合并后的中间元素,要求时间代价为O(logn)。 2、假设两个有序数组长度不等,同样的求出中位数。 一:解析: 这个题目看起来非常简单。第...

2-13. 两个有序序列的中位数(25)(ZJU_PAT 链表 | 数组 )

2-13. 两个有序序列的中位数(25)(ZJU_PAT 链表 | 数组 )

Find the median of two sorted arrays(找到两个排好序的数组的中位数)

原题是这样的: There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the media...
  • wuh2333
  • wuh2333
  • 2016年09月19日 14:28
  • 260

二分查找-两已排序数组中找中位数二题

第一题来自于《算法导论》第九章习题 9.3-8. 已知两个已排序数组X[n], Y[n](假设升序),问在时间O(lgn)内找到全部2n个数中的中位数。 给了提示时间O(lgn),那么必定使用二分查找...

有序数组中找中位数

原文:Median of two sorted arrays 题目:两个有序数组A和B,大小都是n,寻找这两个数组合并后的中位数。时间复杂度为O(logn)。 中位数:如果数组有个数是奇数,那么中...

Median of Two Sorted Arrays(求两个数组的中位数)

There are two sorted arrays nums1 and nums2 of size m and n respectively.Find the median of the two ...
  • ylifam
  • ylifam
  • 2017年03月07日 00:08
  • 98

leetcode解题之4. Median of Two Sorted Arrays java (两个排序数组的中位数)

leetcode解题之4. Median of Two Sorted Arrays java (两个排序数组的中位数)

对有限数组进行计数排序和求一个无序数组的中位数——题集(十八)

对有限数组进行计数排序和求一个无序数组的中位数——题集(十九) 今天分享一下,实现对有限数组进行计数排序和求一个无序数组的中位数的代码实现和测试用例。 数组定义为:int a[] = {12,13,1...

求两个有序数组的中位数(无论数组长度是否一样)

转自:http://blog.csdn.net/hhygcy/article/details/4584064 问题出处: http://fayaa.com/tiku/view/114/  ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:有序数组中找中位数
举报原因:
原因补充:

(最多只允许输入30个字)