关闭
当前搜索:

论文写作: Abstract 和 Introduction 的 区别

摘自 abstract和introduction的区别是什么: 共同点 Abstract 和 Introduction 都是论文写作中 重要的环节。 Abstract 是论文正文前面的摘要。 是用简洁的语言指出论文的主要内容、研究方法和成果发现,行文简洁,逻辑性强,具有程式化的特点。 Introduction 是论文主体部分的开端词。 用较为详细的语言指出论文写作所涉及的内容或者要...
阅读(4) 评论(0)

深度学习: 经典 数据集 汇总

COCO 官网:cocodataset.org 介绍:Microsoft COCO 数据集、COCO数据库 PASCAL 主要有 VOC2007 和 VOC2012 。 官网:pjreddie.com/projects/pascal-voc-dataset-mirror 介绍:PASCAL VOC数据集分析、Pascal VOC 数据集介绍 CIFAR 主要有...
阅读(15) 评论(0)

深度学习: 目标检测算法 效果对比

检测算法 R-CNN: 使用selective search方法先产生region proposals,再使用浅层CNN网络进行特征提取,最后使用svm进行分类。这篇论文里提及的一个点,就是关于bbox的回归方法。由于使用selective search方法提取的每一个region都进行一次前向卷积操作,因此R-CNN方法非常耗时,不适于实际检测使用。 SPP-Net: 针对R-CNN多次...
阅读(13) 评论(0)

思考: 对 “泛化能力” 的疑问

官方定义 在周老师的《机器学习》一书 (P3) 中,泛化能力一词定义如下: 学得模型适用于新样本的能力,称为 “泛化”(generalization)能力。 同理,泛化误差的存在就是为了防止学习器把训练样本学得太好了,导致可能已经把训练样本自身的一些特点当做了所有潜在样本都会具有的一般性质。 然而,没有人对 新样本的 分布特点 做出限定。 思考 有些解决不平衡样本的方法,是通过加...
阅读(10) 评论(0)

思考: 现有 不平衡样本处理方法 的 缺陷

现有的不平衡样本处理 现实中采集到的训练样本往往分布不均。如果不加处理而直接训练,往往会使得模型更侧重训练到样本数目较多的类别,而轻视了样本数目较少类别,最终影响到模型的泛化能力。 这种问题被称为 “不平衡样本问题”。对应的处理方法包括 数据层面处理方法(数据重采样、类别平衡采样)以及 算法层面处理方法(代价敏感方法)等。 问题所在 现有的不平衡样本处理,都是 训练 之前,基于 先验信...
阅读(10) 评论(0)

深度学习: 从 anchor 进化到 RoI

生成anchor anchor 概念 于 Faster R-CNN 中 首次 被提出,并在 Faster R-CNN 和 Mask R-CNN 中得到运用。 anchor生成于RPN网络的头部(由 绿框 和 蓝框 共同生成。其中,绿框 表示 生成anchor框;蓝框 表示 生成anchor得分): 双分支 绿框分支 负责 anchor的 类别打分;蓝框分支 负责 anchor边界框...
阅读(15) 评论(0)

深度学习: ZFNet 网络

网络结构 ZFNet = (conv+relu+norm+maxpooling)×2 + (conv+relu)×3 + fc×2 + softmax 可以理解为对AlexNet进行了微调。 论文出处 Visualizing and Understanding Convolutional Networks...
阅读(17) 评论(0)

车载网络: OMNet++所需的组件支持

安装过程 安装过程详见我的另两篇博客:Ubuntu: 安装 OMNeT++ 仿真工具、车载网络: OMNeT++安装CAN协议 。 OMNet++所需的组件支持 INET: 支持有线、无线以及移动网络。 CoRE: 支持实时网络。 CoRE4INET: 支持现场总线通讯。...
阅读(12) 评论(0)

论文写作: 一点心得

写在前面以下记录的是这两天和导师、师兄讨论小论文写作所总结的一点心得体会。题目要 基于问题 出发,而不是基于方法出发。比如你的工作是用深度学习解决了某个复杂场景下的问题,就要在题目上体现出这是一个多么多么 难的挑战,让人一看就觉得,哎这个问题一看就很难,就会很 有兴趣去了解你是如何解决的 。比如《基于XX复杂场景下的XXXX》,这样的题目就不错。如果题目定为《基于深度学习的XXXX》,就变成了基于方...
阅读(20) 评论(0)

pytorch: 框架介绍

Tutorial pytorch.org/tutorials 莫烦Python-Pytorch教程系列 Orgpytorch.orgCommunitygithub.com/pytorchModelgithub.com/pytorch/visionSource Codegithub.com/pytorch/pytorchAdvantages 支持动态图 更易于研究...
阅读(33) 评论(0)

车载网络: OMNeT++安装CAN协议

前言 请按照本文叙述的顺序安装。 安装 OMNeT++ 首先要保证已安装好 OMNeT++。具体安装教程可参照 Ubuntu: 安装 OMNeT++ 仿真工具 。 安装 INET 去官网下载最新的 INET 框架 [1]: ​https://inet.omnetpp.org/Download.html 解压之: tar xvfz inet-.tgz 并将解压后的文件...
阅读(61) 评论(0)

Ubuntu: 安装 OMNeT++ 仿真工具

依赖库 Note: 在Ubuntu下才需要事先安装这些依赖库。 其他Linux系统不需要,可直接跳至工具安装。 sudo apt-get update sudo apt-get install build-essential gcc g++ bison flex perl \ qt5-default tcl-dev tk-dev libxml2-dev zlib1g-dev defaul...
阅读(52) 评论(0)

Ubuntu: 虚拟机 安装

安装 照着网上最常见的VMware虚拟机安装教程。 改动之处 开机按 F2, 进入 高级模式 - 高级 - 处理器设置 - Intel虚拟 设置为 开启 Vmare 中 设置-修改-芯片组 改为 ICH9...
阅读(40) 评论(0)

tensorflow: 畅玩tensorboard图表(SCALARS)

前言 这篇博客建立在你已经会使用tensorboard的基础上。如果你还不会记录数据并使用tensorboard,请移步我之前的另一篇博客:tensorflow: tensorboard 探究 关于模型文件夹 每启动一轮新的训练时,存放生成模型的文件夹就会生成一个独立的子文件夹。 每当开始初始训练时,该子文件夹下会生成一个events文件用于记录开始: 停掉训练时,该子文件夹下会...
阅读(47) 评论(0)

思考: 根据 图片数据集 规律性 灵活设计 卷积结构

观察 针对不同问题所采集的图片数据集往往具有一定规律性: 如果为 平视拍摄(例如普通相机拍摄),那么人们往往倾向于把要关注的事物(如人脸)置于 画面中央 。 如果为 -45°俯视拍摄(例如监控摄像机拍摄),那么同类实例(如行人)往往呈现 近大远小 。 现有卷积结构设计 现有的卷积结构大多 一视同仁 地进行 视野感受: 缺陷 对整幅图片进行的 无差别卷积 意味着 注意力的...
阅读(49) 评论(0)

思考: 如何设计 输出结果 具有对称性 的 网络结构

前言 这个Idea其实不是我想出来的。 实验室师兄参与了一个强化学习竞赛,让仿生人体学会站立行走乃至跑起来。在比赛的过程中他自己用tensorflow设计出了一个 对称性神经网络 ,能保证输出的 最终结果 具有 对称性(具体表现为 输出结果的数值分布 呈现 左右对齐)。 讨论 师兄问我,如果让我设计这个网络,该如何实现。 我想到的是,如果网络结构比较简单的话,保证 每一层的参数分布 左右...
阅读(40) 评论(0)

思考: R-CNN系列 网络结构 设计缺陷

观察 在 Fast R-CNN 中,网络最后部分的 cls reg (分类回归,即对框内实例进行标签分类)和 bbox reg (边界框回归,即对边界框进行平移回归)采用的是 双分支 并行 结构: 而且在 Faster R-CNN 中照搬了这一结构。 甚至在 Mask R-CNN 中,更是将 cls reg 、 bbox reg 和 mask 设计成 三分支 并行 : 思考...
阅读(112) 评论(0)

思考: 改进 现有的 网络参数初始化 方法

现有的 网络参数 初始化 方法 全零初始化 网络参数初始化方法 最粗暴的 莫过于 全零初始化 。顾名思义,所有参数全部初始化为0。想法很好,简便省事儿,还可使得初始化全零时参数的期望与网络稳定时参数的期望一致为0。 But,参数全为0,那么同层网络中,所有神经元的输出必然相同。而相同的输出,意味着。。梯度更新完全一样。。。那模型还训练个卵。。。。 随机初始化 于是最常用的就是 随...
阅读(106) 评论(0)

深度学习: Faster R-CNN 网络

Structure 看不清的可以右键,在新tab中查看该图片: 前部 Faster R-CNN 头部 负责对输入图像进行 特征提取 : 网络结构有两种,一种是将ZFNet(扔掉了尾端的全连接层)拿来用,另一种则是将VGG拿来用(扔掉了尾端的全连接层)。论文中给出的是第一种(绿框内为拿来用的那部分): 中部 Faster R-CNN 中部 负责对 特征图 (即前部所提取到...
阅读(168) 评论(0)

深度学习: RPN 网络

Overview 绿框内 为RPN所在的位置: 放大之后是这样: 庖丁解牛 RPN由以下三部分构成: 在 RPN头部 ,通过以下结构生成 anchor(其实就是一堆有编号有坐标的bbox): 论文中的这幅插图对应的就是 RPN头部: (曾经以为这张图就是整个RPN,于是百思不得其解,走了不少弯路。。。) 在 RPN中部, 分类分支(cls) 和 边框回归分支(b...
阅读(102) 评论(0)
473条 共24页1 2 3 4 5 ... 下一页 尾页
    Site Search
    Google 本站
    个人资料
    • 访问:135963次
    • 积分:6180
    • 等级:
    • 排名:第4687名
    • 原创:459篇
    • 转载:14篇
    • 译文:0篇
    • 评论:24条
    About
    博客专栏
    文章分类