关闭
当前搜索:

opencv: cv2.flip 图像翻转 进行 数据增强

Syntax flip(src, flipCode[, dst]) args flipCode Anno 1 水平翻转 0 垂直翻转 -1 水平垂直翻转 DemoOriginal Image 原图像: Flipped Horizontally 水平翻转: Flipped Vertically 垂直翻转: Flipped Horizontally & Verti...
阅读(205) 评论(0)

目标检测: RCNN系列

RCNN系列之前传统的detection主流方法: DPM(Deformable parts models), 在VOC2007上能到43%的mAP,虽然DPM和CNN看起来差别很大,但依旧属于CNN。 CNN流行之后,Szegedy做过将detection问题作为回归问题的尝试(Deep Neural Networks for Object Detection),但是效果差强人意,在VOC20...
阅读(204) 评论(0)

CNN经典网络模型

年份表 网络 提出的年份 意义 LeNet 1998 鼻祖 AlexNet 2012 兴盛 ZF-net 2013 GoogleNet 2014 VGG 2014 ResNet 2015...
阅读(148) 评论(0)

机器学习: 性能度量

代码模板# coding=utf-8import sys reload(sys) sys.setdefaultencoding('utf-8')... ...def performance(tp, fn, fp, tn): # 查准率 P = tp / float(tp + fp) # 查全率 R = tp / float(tp + fn) # F1...
阅读(221) 评论(0)

深度学习: 验证集 & 测试集 区别

区别 类别 验证集 测试集 是否被训练到 否 否 作用 纯粹用于调超参数 纯粹为了加试以验证泛化性能 使用次数 多次使用,以不断调参 仅仅一次使用 缺陷 模型在一次次重新手动调参并继续训练后所逼近的验证集,可能只代表一部分非训练集,导致最终训练好的模型泛化性能不够 测试集为了具有泛化代表性,往往数据量比较大,测试一轮要很久,所以往往只取测试集...
阅读(626) 评论(0)

回归分析 评价方法

概念  在回归(Regression)方法中,我们预测一系列连续的值,在预测完后需要评价预测结果的好坏。关于这个评价标准,目前学术界有多种标准。在深度学习中最常见的是MAE和MSE。对照表 回归分析中的评价方法 公式 互相转换 MAE 1n∑ni=1∣y−y^∣\frac{1}{n}\sum_{i=1}^n\mid{y}-\hat{y}\mid MSE 1n∑ni=1...
阅读(170) 评论(0)

深度学习框架 横向对比

名称 发布时间 阵营 源码 star fork TensorFlow Nov 1, 2015 Google、Yahoo! tensorflow/tensorflow 62,648 30,331 Caffe Sep 8, 2013 BVLC/caffe 18,869 11,586 PyTorch Jan 22, 2012...
阅读(198) 评论(2)

Dataset 列表:机器学习研究

List of datasets for machine learning researchFace recognition[edit]In computer vision, face images have been used extensively to develop face recognition systems, face detection, and many other projec...
阅读(1595) 评论(0)
    Site Search
    Google 本站
    个人资料
    • 访问:88620次
    • 积分:4962
    • 等级:
    • 排名:第6062名
    • 原创:398篇
    • 转载:4篇
    • 译文:0篇
    • 评论:22条
    About
    博客专栏
    文章分类