110706 Smith Numbers

原创 2013年12月05日 14:43:25


import java.util.*;
import static java.lang.Math.*;

public class Main {
	private static List<Long> s_Primes;
	
	static
	{
		s_Primes = new LinkedList<Long>();
		s_Primes.add(2L);
		long limit = (long)sqrt(2000000000L) + 1;
		for (long i = 3L; i <= limit; i += 2L)
		{
			long mid = (long)sqrt(i);
			Iterator<Long> iter = s_Primes.iterator();
			
			boolean isPrime = true;
			while (iter.hasNext())
			{
				long x = iter.next();
				if (x > mid)
					break;
				
				if ((i % x) == 0)
				{
					isPrime = false;
					break;
				}
			}
			
			if (isPrime)
				s_Primes.add(i);
		}
	}
	
	private static List<Long> GetAllPrimeElements(long number)
	{		
		List<Long> result = new LinkedList<Long>();
		Iterator<Long> iter = s_Primes.iterator();
		boolean canTryNext = true;
		long mid = (long)sqrt(number);
		long i = 0;
		while (number > 1)
		{
			if (canTryNext)
			{
				if (!iter.hasNext())
				{
					result.add(number);
					return result;
				}
				
				i = iter.next();
				if (i > mid)
				{
					result.add(number);
					return result;
				}
			}
			
			if ((number % i) == 0)
			{
				canTryNext = false;
				number /= i;
				mid = (long)sqrt(number);
				result.add(i);
			}
			else
				canTryNext = true;
		}
		
		return result;
	}
	
	private static long GetSum(long number)
	{
		long sum = 0;
		while (number > 0)
		{
			sum += number % 10;
			number /= 10;
		}
		return sum;
	}
	
	private static long GetSum(List<Long> elements)
	{
		if ((elements == null) ||
				(elements.size() <= 1))
			return -1;
		
		long sum = 0;
		for (long i : elements)
			sum += GetSum(i);
		
		return sum;
	}
	
	private static boolean IsSmith(long number)
	{
		if (number <= 3)
			return false;
		
		List<Long> elements = GetAllPrimeElements(number);
		
		long numberSum = GetSum(number);
		long elementsSum = GetSum(elements);
		
		return (numberSum == elementsSum);
	}
	
	private static void Handle(long n)
	{
		long number = n + 1;
		while (!IsSmith(number))
			++number;
		System.out.println(number);
	}
	
	public static void main(String[] args)
	{
		Scanner inScanner = new Scanner(System.in);
		long cnt = inScanner.nextLong();
		for (int i = 1; i <= cnt; ++i)
		{
			long n = inScanner.nextLong();
			if (n <= 3L)
				System.out.println(4);
			else
				Handle(n);
		}
	}

}


Smith Numbers(分解质因数)

Smith Numbers Time Limit: 1000ms Memory Limit: 10000KB 64-bit integer IO format: %lld      Java cla...
  • x_y_q_
  • x_y_q_
  • 2016年07月08日 13:01
  • 328

(挑战编程_7_6)Smith Numbers

http://www.programming-challenges.com/pg.php?page=downloadproblem&probid=110706&format=html #includ...
  • leileicaocao
  • leileicaocao
  • 2013年06月09日 15:13
  • 420

【POJ】1142 - Smith Numbers(容斥原理)

点击打开题目 Smith Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submission...
  • wyg1997
  • wyg1997
  • 2016年07月22日 17:55
  • 172

算法笔记学习000——Smith-Waterman算法寻找两个字符串中匹配度最高的子串

Smith-Waterman算法与1981年提出,出发点是
  • u012976400
  • u012976400
  • 2014年10月19日 20:58
  • 2366

Smith Numbers(Poj1142)(质因数分解+素数判定)

Smith Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 13142   ...
  • hdd871532887
  • hdd871532887
  • 2015年12月19日 21:41
  • 385

Python学习笔记 —— 数字类型【Numbers】及常用方法

Tips: 在Python中数据类型不允许改变的,如果改变了,则会重新分配内存空间。 pi: 数字常量pi(圆周率) e:自然常数 Numbers支持四种不同的数值类型:整型...
  • linfengwenyou
  • linfengwenyou
  • 2016年06月06日 15:05
  • 788

阻抗匹配与史密斯(Smith)圆图: 基本原理

阻抗匹配与史密斯(Smith)圆图: 基本原理 本文转自:zhuhaiyang110的百度空间,地址是:http://hi.baidu.com/zhuhaiyang110/item/e3d9...
  • oyyj42
  • oyyj42
  • 2014年06月25日 18:40
  • 1561

Smith Numbers 素数打表+暴力+求素因子+poj

Smith Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12106   ...
  • u012870383
  • u012870383
  • 2014年07月25日 12:49
  • 427

华为机试—Smith数

对于一个正整数n,如果它的各位之和等于它的所有质因数的各位之和,则该数被称为Smith数。例如,31257=3*3*23*151,31257 的各位数字之和为3+1+2+5+7=18,它的所有质因数的...
  • wtyvhreal
  • wtyvhreal
  • 2015年01月11日 01:28
  • 1975

Smith Numbers(欧拉函数,容斥原理)

Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu Submit Status Descri...
  • qaz135135135
  • qaz135135135
  • 2016年07月26日 08:56
  • 375
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:110706 Smith Numbers
举报原因:
原因补充:

(最多只允许输入30个字)