关闭

树的子结构19

标签: 树的子结构
105人阅读 评论(0) 收藏 举报
分类:

题目描述:输入两棵二叉树A和B,判断B是不是A的子结构。二叉树结点的定义如下:

//二叉树的定义
struct BinTreeNode{
  int m_value;
  BinTreeNode *left;
  BinTreeNode *right;
  //创建根节点,值为e
  BinTreeNode* createRoot(int e);
  //将e作为当前结点的左孩子值插入
  void insertAsLC(int e);
  //将e作为当前结点的右孩子值插入
  void insertAsRC(int e);
};

//创建根节点,值为e
BinTreeNode* BinTreeNode::createRoot(int e){
     BinTreeNode *root = new BinTreeNode;
     root->m_value = e;
     return root;
 }

//作为节点的左孩子插入元素e
void BinTreeNode::insertAsLC(int e){
    BinTreeNode *Left = new BinTreeNode;
    Left->m_value = e;
    this->left = Left;
}

//作为节点的右孩子插入元素e
void BinTreeNode::insertAsRC(int e){
    BinTreeNode *Right = new BinTreeNode;
    Right->m_value = e;
    this->right = Right;
}

解题思路:

  1. 两棵树是否为空的情况;
  2. 如果有A、B两棵树,验证B树是不是A树中的一颗子树;
  3. 需要先对比根节点
  4. 若根节点相同,则对比左右子节点
  5. 若左右子节点不同,则需要继续在A树中查找与B树根节点相等的节点。

测试用例:

int main(){
    //创建一颗A树
    BinTreeNode *A = new BinTreeNode;
    A->m_value = 8;

    A->insertAsLC(8);
    A->insertAsRC(7);

    A->left->insertAsLC(9);
    A->left->insertAsRC(2);
    A->left->right->insertAsLC(4);
    A->left->right->insertAsRC(7);


    //创建一棵B树
    BinTreeNode *B = new BinTreeNode;
    B->m_value = 8;

    B->insertAsLC(9);
    B->insertAsRC(2);

    //判断B是不是A的子树
    bool result = HasSubTree(A, B);  //Output: Sub Tree
    //判定结果
    if(result)
        std::cout << "Sub Tree\n";
    else
        std::cout << "Isn't sub tree\n";

    return 0;
}

函数实现:

//DoesTree1HaveTree2函数
bool DoesTree1HaveTree2(BinTreeNode *A_Root, BinTreeNode *B_Root){
    //进入此函数说明根节点相等
    if(!B_Root)//如果B树为空,则为真
        return true;
    if(!A_Root)
        return false;
    if(A_Root->m_value != B_Root->m_value)
        return false;
    return DoesTree1HaveTree2(A_Root->left, B_Root->left) && DoesTree1HaveTree2(A_Root->right, B_Root->right);
}

//主函数实现
bool HasSubTree(BinTreeNode *A_Root, BinTreeNode *B_Root){
    bool result = false;
    if(A_Root != NULL && B_Root != NULL){
        //先对比根节点
        if(A_Root->m_value == B_Root->m_value){//若想等,对比子树节点
           result = DoesTree1HaveTree2(A_Root, B_Root);
        }
        //再分别判断左右子树
        if(!result)
            result = HasSubTree(A_Root->left, B_Root);
        if(!result)
            result = HasSubTree(A_Root->right, B_Root);
    }
    return result;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:36101次
    • 积分:1360
    • 等级:
    • 排名:千里之外
    • 原创:104篇
    • 转载:3篇
    • 译文:0篇
    • 评论:6条
    文章分类
    最新评论