【Spark】Spark基本概念

原创 2015年07月08日 14:24:15

Spark专用名词

  • RDD —- resillient distributed dataset 弹性分布式数据集
  • Operation —- 作用于RDD的各种操作分为transformation和action
  • Job —- 作业,一个JOB包含多个RDD及作用于相应RDD上的各种operation
  • Stage —- 一个作业分为多个阶段
  • Partition —- 数据分区, 一个RDD中的数据可以分成多个不同的区
  • DAG —- Directed Acycle graph, 有向无环图,反应RDD之间的依赖关系
  • Narrow dependency —- 窄依赖,子RDD依赖于父RDD中固定的data partition
  • Wide Dependency —- 宽依赖,子RDD对父RDD中的所有data partition都有依赖
  • Caching Managenment —- 缓存管理,对RDD的中间计算结果进行缓存管理以加快整体的处理速度

Spark编程模型

下面是Spark的一个日志计数示例,该程序演示了Spark的计算模型:

下面是Spark运行时涉及的各组件的概况图:

从RDD转换和存储角度,用户程序对RDD通过多个函数进行操作,将RDD进行转换。Block Manager管理RDD的物理分区,每个Block就是节点上对应的一个数据块,可以存储在内存或磁盘。而RDD中的partition是一个逻辑数据块,对应相应的物理块Block。
本质上,一个RDD在代码中相当于是数据的一个元数据结构,存储着数据分区及其逻辑结构映射关系,存储着RDD之前的依赖转换关系。

作用于RDD上的操作分为transformantion和action。 经Transformation处理之后,数据集中的内容会发生更改,由数据集A转换成为数据集B;而经Action处理之后,数据集中的内容会被归约为一个具体的数值。
只有当RDD上有action时,该RDD及其父RDD上的所有operation才会被提交到cluster中真正的被执行。

Spark运行态

用Spark的术语来说,static view称为dataset-level view,而dynamic view称为parition-level view,关系如图所示:

在Spark中的task可以对应于线程,worker是一个个的进程,worker由driver来进行管理。

在源码阅读时,需要重点把握以下两大主线:
* 静态视图static view 即 RDD, transformation and action
* 动态视图dynamic view 即 life of a job,每一个job又分为多个stage,每一个stage中可以包含多个rdd及其transformation,这些stage又是如何映射成为task被distributed到cluster中

Spark调度机制

Spark应用提交后经历了一系列的转换,最后成为Task在每个节点上执行。
当有Action作用于某RDD时,该action会作为一个job被提交。
在提交的过程中,DAGScheduler模块介入运算,计算RDD之间的依赖关系。RDD之间的依赖关系就形成了DAG。
每一个Job被分为多个stage,划分stage的一个主要依据是当前计算因子的输入是否是确定的,如果是则将其分在同一个stage,避免多个stage之间的消息传递开销。
当stage被提交之后,由taskscheduler来根据stage来计算所需要的task,并将task提交到对应的worker。
大体概况如下图所示:

关于Spark的调度运行机制详见下一节的RDD详解中的介绍。

转载请注明作者Jason Ding及其出处
GitCafe博客主页(http://jasonding1354.gitcafe.io/)
Github博客主页(http://jasonding1354.github.io/)
CSDN博客(http://blog.csdn.net/jasonding1354)
简书主页(http://www.jianshu.com/users/2bd9b48f6ea8/latest_articles)
Google搜索jasonding1354进入我的博客主页

版权声明:本文为博主原创文章,未经博主允许不得转载。

SPARK中的基本概念

基本概念以下内容主要参考自《大数据Spark企业实战》一书(作者:王家林) Application:用户编写的Spark程序,包含Driver和Executor代码。 Driver:运行main函数并...
  • wy250229163
  • wy250229163
  • 2016年09月05日 12:48
  • 363

Spark的基本概念及工作原理

Spark作业: -Application:用户自定义的Spark程序,用户提交后,Spark为App分配资源将程序转换并执行。 -Driver Program:运行Application的main(...
  • u013063153
  • u013063153
  • 2016年11月11日 10:35
  • 593

Spark的几个基本概念:Driver和Job,Stage

Driver Program, Job和Stage是Spark中的几个基本概念。Spark官方文档中对于这几个概念的解释比较简单,对于初学者很难正确理解他们的涵义。官方解释如下(http://spar...
  • jiangwlee
  • jiangwlee
  • 2016年03月01日 18:05
  • 12804

spark概念、编程模型和模块概述

http://blog.csdn.net/pipisorry/article/details/50931274spark基本概念Spark一种与 Hadoop 相似的通用的集群计算框架,通过将大量数据...
  • pipisorry
  • pipisorry
  • 2016年03月19日 15:34
  • 1403

Spark基本概念

Spark的基本概念
  • suchang1127
  • suchang1127
  • 2015年10月25日 19:15
  • 414

Spark调度机制:1)简介&基本概念

1.Spark的调度机制简介 Spark的调度机制有2类,主要是集群调度机制和应用程序内部的调度机制。理解其中的原理,便于我们更深入地了解Spark和性能优化。 集群资源调度由集群资源管理器(Cl...
  • jiangpeng59
  • jiangpeng59
  • 2016年11月13日 19:04
  • 573

day26:Spark Runtime(Driver、Masster、Worker、Executor)内幕

以下内容整理来源于DT大数据梦工厂:新浪微博:www.weibo.com/ilovepains/ DT大数据梦工厂 新浪微博:www.weibo.com/ilovepai...
  • zhanglin200508
  • zhanglin200508
  • 2016年03月02日 23:15
  • 511

spark基本概念

我们知道Spark总是以集群的方式运行的,Standalone的部署方式是集群方式中最为精简的一种(另外的是Mesos和Yarn)。Standalone模式中,资源调度是自己实现的,是MS架构的集群模...
  • yjh314
  • yjh314
  • 2016年09月18日 11:22
  • 135

Spark实践项目4:Spark基本概念

Spark基本概念 RDD——Resillient Distributed Dataset A Fault-Tolerant Abstraction for In-Memory Cluster Co...
  • DeryLiu
  • DeryLiu
  • 2016年08月07日 16:33
  • 201

『 Spark 』2. spark 基本概念解析

原文:『 Spark 』2. spark 基本概念解析 写在前面本系列是综合了自己在学习spark过程中的理解记录 + 对参考文章中的一些理解 + 个人实践spark过程中的一些心得而来。写这样一个系...
  • lllgyt327
  • lllgyt327
  • 2016年04月27日 20:23
  • 76
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【Spark】Spark基本概念
举报原因:
原因补充:

(最多只允许输入30个字)