关闭

归并排序

138人阅读 评论(0) 收藏 举报
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。



归并排序的基本思想

将待排序序列R[0...n-1]看成是n个长度为1的有序序列,将相邻的有序表成对归并,得到n/2个长度为2的有序表;将这些有序序列再次归并,得到n/4个长度为4的有序序列;如此反复进行下去,最后得到一个长度为n的有序序列。

综上可知:

归并排序其实要做两件事:

(1)“分解”——将序列每次折半划分。

(2)“合并”——将划分后的序列段两两合并后排序。



我们先来考虑第二步,如何合并?

在每次合并过程中,都是对两个有序的序列段进行合并,然后排序。

这两个有序序列段分别为 R[low, mid] 和 R[mid+1, high]。

先将他们合并到一个局部的暂存数组R2中,带合并完成后再将R2复制回R中。

为了方便描述,我们称 R[low, mid] 第一段,R[mid+1, high] 为第二段。

每次从两个段中取出一个记录进行关键字的比较,将较小者放入R2中。最后将各段中余下的部分直接复制到R2中。

经过这样的过程,R2已经是一个有序的序列,再将其复制回R中,一次合并排序就完成了。

核心代码


复制代码

public void Merge(int[] array, int low, int mid, int high) {
     int i = low; // i是第一段序列的下标
    int j = mid + 1; // j是第二段序列的下标
    int k = 0; // k是临时存放合并序列的下标
    int[] array2 = new int[high - low + 1]; // array2是临时合并序列

     // 扫描第一段和第二段序列,直到有一个扫描结束
    while (i <= mid && j <= high) {
         // 判断第一段和第二段取出的数哪个更小,将其存入合并序列,并继续向下扫描
        if (array[i] <= array[j]) {
             array2[k] = array[i];
             i++;
             k++;
         } else {
             array2[k] = array[j];
             j++;
             k++;
         }
     }

     // 若第一段序列还没扫描完,将其全部复制到合并序列
    while (i <= mid) {
         array2[k] = array[i];
         i++;
         k++;
     }

     // 若第二段序列还没扫描完,将其全部复制到合并序列
    while (j <= high) {
         array2[k] = array[j];
         j++;
         k++;
     }

     // 将合并序列复制到原始序列中
    for (k = 0, i = low; i <= high; i++, k++) {
         array[i] = array2[k];
     }
 }

复制代码

 掌握了合并的方法,接下来,让我们来了解  如何分解。



在某趟归并中,设各子表的长度为gap,则归并前R[0...n-1]中共有n/gap个有序的子表:R[0...gap-1], R[gap...2*gap-1], ... , R[(n/gap)*gap ... n-1]。

调用Merge将相邻的子表归并时,必须对表的特殊情况进行特殊处理。

若子表个数为奇数,则最后一个子表无须和其他子表归并(即本趟处理轮空):若子表个数为偶数,则要注意到最后一对子表中后一个子表区间的上限为n-1。 

核心代码


复制代码

public void MergePass(int[] array, int gap, int length) {
     int i = 0;

     // 归并gap长度的两个相邻子表
    for (i = 0; i + 2 * gap - 1 < length; i = i + 2 * gap) {
         Merge(array, i, i + gap - 1, i + 2 * gap - 1);
     }

     // 余下两个子表,后者长度小于gap
    if (i + gap - 1 < length) {
         Merge(array, i, i + gap - 1, length - 1);
     }
 }

public int[] sort(int[] list) {
     for (int gap = 1; gap < list.length; gap = 2 * gap) {
         MergePass(list, gap, list.length);
         System.out.print("gap = " + gap + ":\t");
         this.printAll(list);
     }
     return list;
 }

复制代码
0
0
查看评论

算法系列(四)排序算法中篇--归并排序和快速排序

在算法系列(三)排序算法上篇 一文中,介绍了冒泡排序,插入排序和选择排序算法。这篇文章继续讲解排序算法。 概述 冒泡排序,插入排序和选择排序算法这些算法的时间复杂度都是O(N^2),是否有更高效的排序算法呢?当然有了,堆排序,归并排序,快速排序,它们的时间复杂度都是O(nlogn)。堆排序...
  • robertcpp
  • robertcpp
  • 2016-05-30 23:04
  • 3405

归并排序及代码实现

自己实现归并排序+快速排序,二者都是嵌套加递归 归并排序: //归并排序 #include #include using namespace std; void merge_sort(int a[],int m_left,int m_right); void merge(int a[...
  • chuchus
  • chuchus
  • 2014-03-22 20:30
  • 1394

利用Python实现归并排序

在讲归并排序之前我们先来了解一下什么是分治算法。为什么归并排序属于分治算法的体现。 分治算法分治算法基本思想就是将一个比较大规模的问题分解成为若干个规模较小的问题来解决。这些小问题相当于是原问题的子集并且相互独立。每个子集的性质和原问题性质必须要保持一致。 分治算法特征1. 该问题可以分解成为程序...
  • minxihou
  • minxihou
  • 2016-07-04 15:09
  • 2162

归并排序及其应用

1 归并排序的特点归并排序是一种利用分治技术来实现一种稳定排序算法,该算法的时间复杂度为O(nlogn),该算法的常数因子比较大,通常应用于数据量比较大的场合。通常,我们所学习的归并排序算法都是二路归并,本文也主要来讨论二路归并排序算法。分治法的一般的求解步骤为:a 分解:将原问题分解为一系列子问题...
  • mitedu
  • mitedu
  • 2009-02-12 16:22
  • 2922

归并排序算法解析

归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。 一次归并算法 1、基本思路       设两个有序的子文件(相当于输入堆)放在同一向量中...
  • yousir1988
  • yousir1988
  • 2012-06-25 17:38
  • 5484

【排序】归并排序(递归和非递归版本)

#include using namespace std; void merge(int* a, int* temp, int begin, int middle, int end){ int i = begin; int j = middle + 1; int k = 0; while ...
  • ruan875417
  • ruan875417
  • 2016-05-14 13:47
  • 810

归并排序(视频+详解+代码)

归并排序 概述:归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归...
  • dreamzuora
  • dreamzuora
  • 2016-10-16 15:38
  • 988

归并排序(递归实现和迭代实现)

//首先是递归实现的方式#include #define MAXSIZE 10 //实现归并,并把数据都放在list1里面 void merging(int *list1,int list1_size,int *list2,int list2_size) { int i,j,k,m; i =...
  • chencangui
  • chencangui
  • 2015-03-27 17:55
  • 3857

排序算法之 归并排序 及其时间复杂度和空间复杂度

在排序算法中快速排序的效率是非常高的,但是还有种排序算法的效率可以与之媲美,那就是归并排序;归并排序和快速排序有那么点异曲同工之妙,快速排序:是先把数组粗略的排序成两个子数组,然后递归再粗略分两个子数组,直到子数组里面只有一个元素,那么就自然排好序了,可以总结为先排序再递归;归并排序:先什么都不管,...
  • YuZhiHui_No1
  • YuZhiHui_No1
  • 2015-03-12 16:16
  • 18260

算法设计之归并排序(C++实现)

归并排序遵循分治法的思想:将
  • u011426031
  • u011426031
  • 2014-08-23 07:27
  • 3351
    个人资料
    • 访问:46462次
    • 积分:1729
    • 等级:
    • 排名:千里之外
    • 原创:121篇
    • 转载:60篇
    • 译文:1篇
    • 评论:7条
    最新评论