动态规划初步学习-hdu4800

原创 2015年11月18日 22:05:21

最近在准备上海的ACM现场赛,刷了多类题目,发现自己的短板相当明显,特别是在dp上面,简直惨不忍睹。。。于是决心重新学习dp,从hdu4800开始。
题目:http://acm.hdu.edu.cn/showproblem.php?pid=4800

Josephina and RPG

Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1272 Accepted Submission(s): 375
Special Judge

Problem Description
A role-playing game (RPG and sometimes roleplaying game) is a game in which players assume the roles of characters in a fictional setting. Players take responsibility for acting out these roles within a narrative, either through literal acting or through a process of structured decision-making or character development.
Recently, Josephina is busy playing a RPG named TX3. In this game, M characters are available to by selected by players. In the whole game, Josephina is most interested in the “Challenge Game” part.
The Challenge Game is a team play game. A challenger team is made up of three players, and the three characters used by players in the team are required to be different. At the beginning of the Challenge Game, the players can choose any characters combination as the start team. Then, they will fight with N AI teams one after another. There is a special rule in the Challenge Game: once the challenger team beat an AI team, they have a chance to change the current characters combination with the AI team. Anyway, the challenger team can insist on using the current team and ignore the exchange opportunity. Note that the players can only change the characters combination to the latest defeated AI team. The challenger team gets victory only if they beat all the AI teams.
Josephina is good at statistics, and she writes a table to record the winning rate between all different character combinations. She wants to know the maximum winning probability if she always chooses best strategy in the game. Can you help her?

Input
There are multiple test cases. The first line of each test case is an integer M (3 ≤ M ≤ 10), which indicates the number of characters. The following is a matrix T whose size is R × R. R equals to C(M, 3). T(i, j) indicates the winning rate of team i when it is faced with team j. We guarantee that T(i, j) + T(j, i) = 1.0. All winning rates will retain two decimal places. An integer N (1 ≤ N ≤ 10000) is given next, which indicates the number of AI teams. The following line contains N integers which are the IDs (0-based) of the AI teams. The IDs can be duplicated.

Output
For each test case, please output the maximum winning probability if Josephina uses the best strategy in the game. For each answer, an absolute error not more than 1e-6 is acceptable.

Sample Input
4
0.50 0.50 0.20 0.30
0.50 0.50 0.90 0.40
0.80 0.10 0.50 0.60
0.70 0.60 0.40 0.50
3
0 1 2

Sample Output
0.378000
题目意思很繁杂,大概就是我方军队有m个人,从m个角色中组成C(m,3)支队伍,现在要组团去打对面n个敌人。当i与j打架时i赢的概率为t(i,j),并且如果打赢了一个敌人,可以与之互换id。求我方全赢的最大概率。
训练赛的时候没能写出来,一直wa,只能说,dp的边界条件很重要。。
思路:
用dp[i][j]表示第j号战士打赢i号对手的概率,要考虑重复的情况。
代码:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<string>
using namespace std;
double dp[11000][122];
double str[122][122];
int st[11000];
int main()
{
    int m,n;
    while(~scanf("%d",&m))
    {
        m = m * (m - 1) * (m - 2) / 6;
        for(int i = 0; i < m; i++)
            for(int j = 0; j < m; j++)
                scanf("%lf",&str[i][j]);
        scanf("%d",&n);
        for(int i = 1; i <= n; i++)
            scanf("%d",&st[i]);
        memset(dp,0,sizeof(dp));
        for(int i = 0; i < m; i++)
            dp[1][i] = str[i][st[1]];
        for(int i = 2;i <= n;i++)
            for(int j = 0;j < m;j++)
            {
                if(j == st[i - 1])
                    for(int k = 0;k < m;k++)
                        dp[i][j] = max(dp[i][j],dp[i - 1][k] * str[j][st[i]]);
                else
                    dp[i][j] = dp[i - 1][j] * str[j][st[i]];
            }
        double ans = -99999999;
        for(int i = 0;i < m;i++)
            ans = max(ans,dp[n][i]);    //枚举
        printf("%lf\n",ans);
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

HDU 4800 Josephina and RPG(动态规划)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4800 题面: Josephina and RPG Time Limit: 4000/...

HDU 动态规划(46道题目

  • 2017年07月24日 10:55
  • 24KB
  • 下载

hdu动态规划算法集锦

  • 2012年03月21日 16:41
  • 10KB
  • 下载

hdu1081To The Max(动态规划--初步)

To The Max Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tot...

HDU动态规划

  • 2014年07月10日 15:39
  • 508KB
  • 下载

HDU 1494(动态规划初步)

跑跑卡丁车 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su...

hdu 1159 动态规划初步

题目 Problem Description A subsequence of a given sequence is the given sequence with some elemen...

nyoj18 The Triangle & hdu2084 & nyoj171 聪明的KK 数塔(动态规划初步)

The Triangle 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描述 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 (Figure 1) F...

动态规划初步学习笔记

一、和分治法、贪心法的比较 分治法中各子问题是相互独立的,即它们不包含公共子问题。贪心法的当前选择不能依赖将来所作的选择和子问题的解。它们的不足是:如果各子问题不是相互独立的,则分治法会重复求解公共...

算法之动态规划初步(Java版)

  • 2015年08月04日 09:11
  • 8KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:动态规划初步学习-hdu4800
举报原因:
原因补充:

(最多只允许输入30个字)