有向图双连通分量(tranjan算法) 总结

转载 2015年07月10日 17:15:20

借鉴博客 点击打开链接


Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。

在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。
如果有向图G的每两个顶点都强连通,称G是一个强连通图。
非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components)。

POJ 2187
哪个节点是被其他所有节点都可以所达到的。

图有可能不是连通的。
也有可能重边。

构造一个有向无环图,那么只有出度为0并且只有一个出度为0的点才是
被所有节点所指向。

先把这个有向图的强通分量找出来。当成一个节点。在用上述方法做出来。

HDU 2767
每个公式都可以推导出其他公式,问添加几个证明可以让所有的公式互相推导出来。
补最少的边让这个图所有节点都可以互相到达。


用tranjan算法缩点之后
当一个有向图变成一个有向有环图,
就是所有的出度和入度不为0
一个出度可以和入度添加一条边完成,连通。
剩下来的点都可以用自己本身相同的数量的边完成。


HDU 1269
就是判断是不是全图是一个强连通分量。




HDU 1827
用打电话的方式通知到所有的人。


:当缩点之后,看看哪些点没有入度,就可以判断,他没有被联系到。
在把这个点的最少费用比较出来,然后跟所有的人比较一下。就可以。




HDU 3072
这道题的意思:现在需要从0通知到(n-1)个人。
每个通知的人都会有一个花费的代价。
但是现在有一种情况,如果有两个人可以互相联系到,则那个人只需要通知一个人
就可以,不用管它可以相互到达的另一个点。


思路就是:先缩点。
然后在将所有的路从新走一遍。找出一个点另一个点(有可能是一个块)最小代价。
如果一个点和另一个点是属于同一个强连通分量的就跳过。
然后就加上所有这种的代价,然后就好了。










#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int maxn=100000*4;
int e,pnt[maxn],nxt[maxn],head[maxn];
int low[maxn],dfn[maxn],belong[maxn],st[maxn],panduan[maxn];
int n,m,top,cnt,depth;
//panduan[]判断这个点是否已成为一个单独的强连通分量。
//dfn这个数组是搜索的次序号,不是每一个点的编号。
//Tarjan算法是基于对图深度优先搜索的算法,
//每个强连通分量为搜索树中的一棵子树。搜索时
//把当前搜索树中未处理的节点加入一个堆栈,
//回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。
void AddEdge(int u,int v)
{
    pnt[e]=v;
    nxt[e]=head[u];
    head[u]=e++;
}
void init()
{
    e=0;
    memset(head,-1,sizeof(head));
    memset(dfn,0,sizeof(dfn));
    top=cnt=depth=0;
    for(int i=1; i<=n; i++)
        panduan[i]=belong[i]=0;
}
void dfs(int now)
{
     printf("%d \n",now);
    st[top++]=now;
    dfn[now]=low[now]=++depth;
    panduan[now]=1;
    for(int i=head[now]; i!=-1; i=nxt[i])
    {
        if(!dfn[pnt[i]])
        {
            dfs(pnt[i]);
            low[now]=min(low[now],low[pnt[i]]);
        }
        else if(panduan[pnt[i]])//遇到回边的处理,如果是之前已经处理过的强连通分量的点就不管了。
            low[now]=min(low[now],dfn[pnt[i]]);
    }
    if(low[now]==dfn[now])
    {
        cnt++;
        int j;
        while(j=st[--top])
        {
            panduan[st[top]]=0;
            belong[st[top]]=cnt;
            if(j==now)break;
        }
    }
    return ;
}

int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        if(n==0&&m==0)break;
        init();
        for(int i=0;i<m;i++)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            AddEdge(u,v);
        }
        for(int i=1;i<=n;i++)
            if(!dfn[i])
        dfs(1);
        for(int i=1;i<=n;i++)
            printf("%d ",belong[i]);
        puts("");
        if(cnt>1)puts("No");
        else puts("Yes");
    }
    return 0;
}


相关文章推荐

poj1438One-way Traffic【双连通分量:混合图->有向图】

跟poj1515有点像 不过不是改动一点就能成的,这个题遇到单向边是不改动的,只是把以下几种情况中的边输出: 1) 第一次深搜时把所有有向边都当成无向边,这时候求出的桥必须双向都输出(当然了,一种给...

有向图的强连通分量的tarjan算法总结

tarjan算法运用深度优先搜索求得有向图的强连通分量。主要原因是同一个强连通分量中的所有节点必定在深度优先搜索树的一棵子树中。只要找到这样的子树即可。tarjan算法通过一个栈来实现这个算法。 d...
  • ioo_2
  • ioo_2
  • 2015-08-19 14:52
  • 177

无向图的割点,桥,双连通分量,有向图的强连通分量总结

一、无向图的割点,桥,双连通分量

有向图的强连通分量

  • 2015-07-17 11:54
  • 651KB
  • 下载

【ZSTU4213 2015年12月浙理工校赛 D】【双连通分量tarjan算法】One-Way Roads 无向连通图确定边的方向使得全图任意两点间可达

4213: One-Way Roads Time Limit: 1 Sec  Memory Limit: 128 MB  Special Judge Submit: 133  Solved: 45...

有向图的强连通分量 SCC tarjin算法

这个本来是暑假的时候学图连通性的时候一起学的。没整理出来,又有些遗忘。 现在在 2-sat 里用到它来缩点。先写个简略版的。 算法: dfn[]、low[]初始为++num(排除0), tar...

Kosaraju算法 有向图的强连通分量

有向图的强连通分量即,在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极...

HDU1269——迷宫城堡(有向图求强连通分量,Tarjan算法)

Description 为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A房间和B房...

Tarjan算法【有向图的强连通分量】

[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图...

有向图的强连通分量(tarjan算法)

考虑强连通分量C,设其中第一个被发现的点为x,则,C中其他的点都是x的后代。我们希望在x访问完成时立即输出C(可以同时记录C,输出代表当前在当前的遍历序列中剔除),这样就可以在同一颗DFS树种区分开所...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)