tiny_cnn源码阅读(3)-layer_base和layer

原创 2016年05月30日 22:24:30

概述

神经网络有各个层组成,层是神经网络的基本组件。tiny_cnn中,实现功能的层有input_layer, convolutional_layer, average_pooling_layer, max_pooling_layer, dropout_layer, linear_layer, lrn_layer, fully_connected_layer, partial_connected_layer。这些layer都是从layer_base和layer中派生出来的。

layer_base分析

layer_base是最底层的基类,它包含了层中需要的数据,先看一下数据类型

protected:
    cnn_size_t in_size_;//输入大小
    cnn_size_t out_size_;//输出大小
    bool parallelize_;//是否并行

    layer_base* next_;//layer的前后关系由next和prev标明,都是裸指针
    layer_base* prev_;
    vec_t a_[CNN_TASK_SIZE];          // w * x,a_用来存放中间计算结果(w * x),最终结果f(w * x)存放在output_
    vec_t output_[CNN_TASK_SIZE];     // last output of current layer, set by fprop
    vec_t prev_delta_[CNN_TASK_SIZE]; // last delta of previous layer, set by bprop
    vec_t W_;          // weight vector,存储weight权重系数
    vec_t b_;          // bias vector,存储bias

    /** contribution to derivative of loss function with respect to weights of this layer,
        indexed by worker / thread */
    vec_t dW_[CNN_TASK_SIZE];//存储weight的导数

    /** contribution to derivative of loss function with respect to bias terms of this layer,
        indexed by worker / thread */
    vec_t db_[CNN_TASK_SIZE];//存储bias的导数

    vec_t Whessian_; // diagonal terms of hessian matrix,weight对应的hessian矩阵
    vec_t bhessian_;//bias对应的hessian矩阵
    vec_t prev_delta2_; // d^2E/da^2,
    std::shared_ptr<weight_init::function> weight_init_;//weight初始化类,weight_init::function是个类
    std::shared_ptr<weight_init::function> bias_init_;//bias初始化

CNN_TASK_SIZE是个宏定义的常数,用来并行计算的;vec_t是容器

typedef std::vector<float_t, aligned_allocator<float_t, 64>> vec_t;//以64bit对齐的,存放float_t类型的容器

weight_init_bias_init_是函数指针,用来初始化权重和偏置的。layer_base中很多纯虚函数,都是留给派生类实现,不同的派生类有不同实现。比较典型的有

virtual const vec_t& forward_propagation(const vec_t& in, size_t worker_index) = 0;
virtual const vec_t& back_propagation(const vec_t& current_delta, size_t worker_index) = 0;
virtual const vec_t& back_propagation_2nd(const vec_t& current_delta2) = 0;

第一个为前向传播函数,第二个为反向传播函数(一阶导数),第三个为反向传播(二阶导数)。
前向传播和方向传播可以并行计算,即不同数据由不同线程来计算,最终把数据合并;合并数据的函数是private函数,在调用update_weight()函数时会调用此函数。

    void merge(cnn_size_t worker_size, cnn_size_t batch_size) {//不同线程计算的梯度进行合并
        for (cnn_size_t i = 1; i < worker_size; i++)//注意这里是从1开始计算,结果保存到0
            vectorize::reduce<float_t>(&dW_[i][0],
                static_cast<cnn_size_t>(dW_[i].size()), &dW_[0][0]);
        for (cnn_size_t i = 1; i < worker_size; i++)
            vectorize::reduce<float_t>(&db_[i][0],
                static_cast<cnn_size_t>(db_[i].size()), &db_[0][0]);
        //合并后的梯度,除以batch_size进行归一化
        std::transform(dW_[0].begin(), dW_[0].end(), dW_[0].begin(), [&](float_t x) { return x / batch_size; });
        std::transform(db_[0].begin(), db_[0].end(), db_[0].begin(), [&](float_t x) { return x / batch_size; });

        CNN_LOG_VECTOR(dW_[0], "[dW-merged]");
        CNN_LOG_VECTOR(db_[0], "[db-merged]");
    }

layer分析

layer派生子layer_base,这个派生只是添加了激活函数。

template<typename Activation>
class layer : public layer_base {//layer_base变为layer,多了激活函数Activation
public:
    layer(cnn_size_t in_dim, cnn_size_t out_dim, size_t weight_dim, size_t bias_dim)
        : layer_base(in_dim, out_dim, weight_dim, bias_dim) {}

    activation::function& activation_function() override { return h_; }
protected:
    Activation h_;
};
版权声明:本文为博主原创文章,未经博主允许不得转载。

C++,vector模板类的问题? std::vector<PointT, Eigen::aligned_allocator<PointT> > points;

遇到了类似问题:粘过来备注下 C++,vector模板类的问题? std::vector > points; 我的具体问题是 我看了C++ Primer Plus 的书 模板类实例...
  • qing101hua
  • qing101hua
  • 2017年09月19日 10:42
  • 335

aligned_allocator 源码

aligned_allocator source code
  • CQRuler
  • CQRuler
  • 2016年12月11日 13:42
  • 333

Golang源码探索(三) GC的实现原理

http://www.cnblogs.com/zkweb/p/7880099.html Golang从1.5开始引入了三色GC, 经过多次改进, 当前的1.9版本的GC停顿时间已经可以做...
  • zdy0_2004
  • zdy0_2004
  • 2017年11月24日 14:05
  • 406

caffe源码阅读4-layer.hpp

An interface for the units of computation which can be composed into a Net. Layer&s must implement ...
  • thy_2014
  • thy_2014
  • 2016年07月18日 18:13
  • 1629

tiny_cnn源码阅读(4)-convolutional_layer

convolutional_layer是用来计算卷积的。 connection_table connecction_table是一个二维数组,(x,y)的值(true/false)表示x和y是否关...
  • KangRoger
  • KangRoger
  • 2016年06月02日 22:39
  • 1048

Caffe2源码理解系列之存储

Caffe2存储Caffe2中的存储结构层次从上到下依次是Workspace, Blob, Tensor。Workspace存储了运行时所有的Blob和实例化的Net。Blob可以视为对任意类型的一个...
  • a_1937
  • a_1937
  • 2017年11月13日 18:20
  • 378

Linux内核中内存管理相关的数据结构

本文简要说明几个内核和内存管理有关的结构体。其中 struct page 和 struct zone有较大幅度的删减,主要删减了和NUMA模型SPARSE模型以及内存热插拔相关的域。页框描述符 str...
  • u012946230
  • u012946230
  • 2017年10月16日 22:10
  • 38

tiny_cnn源码阅读(2)-激活函数

激活函数概述 identiti函数 sigmoid函数 relu函数 leaky_relu elu softmax tanh tanh p1m2 源码阅读 参考激活函数概述神经网络都有各个层组成,在不...
  • KangRoger
  • KangRoger
  • 2016年05月29日 14:46
  • 1737

tiny_cnn 在linux下的编译运行

1. 下载tiny-cnn-master  https://github.com/nyanp/tiny-cnn 2. 打开终端,进入tiny-cnn-master/examples/mnist 3....
  • baidu_34540973
  • baidu_34540973
  • 2016年04月05日 09:21
  • 563

CSAPP: Malloc Lab 7

csappmallocoptimizationlabics 本次Lab真是CSAPP系列Lab中最恶心的Lab了! 这是《深入理解计算机系统》第二版配套Lab中的第7个Lab,对应本书...
  • huang1024rui
  • huang1024rui
  • 2016年01月16日 10:47
  • 7446
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:tiny_cnn源码阅读(3)-layer_base和layer
举报原因:
原因补充:

(最多只允许输入30个字)