# 快速幂 jobdu-1447

## 问题

Xinlv wrote some sequences on the paper a long time ago, they might be arithmetic or geometric sequences. The numbers are not very clear now, and only the first three numbers of each sequence are recognizable. Xinlv wants to know some numbers in these sequences, and he needs your help.

The first line contains an integer N, indicting that there are N sequences. Each of the following N lines contain four integers. The first three indicating the first three numbers of the sequence, and the last one is K, indicating that we want to know the K-th numbers of the sequence.
You can assume 0 < K <= 10^9, and the other three numbers are in the range [0, 2^63). All the numbers of the sequences are integers. And the sequences are non-decreasing.

Output one line for each test case, that is, the K-th number module (%) 200907.

2
1 2 3 5
1 2 4 5

5
16

## 代码

#include <iostream>
typedef long long ll;

ll arr[3];
const int MOD = 200907;

int fast_pow( ll a, ll b, int mod );

int main( void )
{
int t = 0;
std::cin >> t;
while( t-- )
{
for( int i = 0; i < 3; ++i )
std::cin >> arr[i];
int k = 0;
std::cin >> k;
int ans = 0;
if( arr[0] - arr[1] == arr[1] - arr[2] )
{
ans = (arr[0]%MOD + ((k-1)%MOD * (arr[1] - arr[0])%MOD)%MOD)%MOD;
}
else
{
ans = (arr[0]%MOD * fast_pow(arr[1]/arr[0], k-1, MOD))%MOD;
}
std::cout << ans << std::endl;
}
return 0;
}

int fast_pow( ll a, ll b, int mod )
{
int ans = 1;
ll w = a;// 这里小心，如果不是ll。可能 w%mod * w%mod这里就溢出了
while(b)
{
if(b%2)
ans = (ans * w)%mod;
w = (w%mod * w%mod)%mod;
b /=2 ;
}
return ans;
}


• 本文已收录于以下专栏：

## lintcode(140)快速幂

Description: 计算an % b，其中a，b和n都是32位的整数。 Explanation: 例如 231 % 3 = 2 例如 1001000 % 1000 =...
• sunday0904
• 2017年05月27日 19:26
• 287

## LintCode 快速幂

LintCode 快速幂计算ana^{n} % b ，其中a，b和n都是32位的整数。样例 例如 2312^{31} % 3 = 2例如 1001000100^{1000} % 1000 =...
• shinanhualiu
• 2015年12月21日 21:43
• 1978

## 快速幂的简单解释

• kencaber
• 2016年08月26日 16:00
• 1113

## 【每日算法】快速幂

• jiange_zh
• 2016年02月18日 11:50
• 3400

## 快速幂+快速幂经典例题

• zhhe0101
• 2016年10月15日 10:59
• 1273

## 快速幂算法代码

• GuoZLH
• 2016年02月01日 00:58
• 346

## ACM模板——快速幂

//From Baidu. 快速幂 int PowerMod(int a, int b, int c) { int ans = 1; a = a % c; while(b>0)...
• Kiritow
• 2016年08月03日 12:33
• 193

## 快速幂乘 Java实现

• qq_28333903
• 2017年01月15日 06:34
• 189

## 优秀而强行的十进制快速幂

• scar_lyw
• 2017年04月14日 10:40
• 612

## POJ 1001 高精度实数相乘与快速幂

• r131303
• 2014年05月09日 20:56
• 874

举报原因： 您举报文章：快速幂 jobdu-1447 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)