【数学之美系列十八 】矩阵运算和文本处理中的分类问题

转载 2007年10月05日 04:20:00
2007年1月1日 下午 03:10:00
发表者:Google 研究员,吴军

我在大学学习线性代数时,实在想不出它除了告诉我们如何解线性方程外,还能有什么别的用途。关于矩阵的许多概念,比如特征值等等,更是脱离日常生活。后来 在数值分析中又学了很多矩阵的近似算法,还是看不到可以应用的地方。当时选这些课,完全是为了混学分的学位。我想,很多同学都多多少少有过类似的经历。直 到后来长期做自然语言处理的研究,我才发现数学家们提出那些矩阵的概念和算法,是有实际应用的意义的。

在自然语言处理中,最常见的两类的分类问题分别是,将文本按主题归类(比如将所有介绍亚运会的新闻归到体育类)和将词汇表中的字词按意思归类(比如将各种 体育运动的名称个归成一类)。这两种分类问题都可用通过矩阵运算来圆满地、同时解决。为了说明如何用矩阵这个工具类解决这两个问题的,让我们先来来回顾一 下我们在余弦定理和新闻分类中介绍的方法。

分类的关键是计算相关性。我们首先对两个文本计算出它们的内容词,或者说实词的向量,然后求这两个向量的夹角。当这两个向量夹角为零时,新闻就相关;当它 们垂直或者说正交时,新闻则无关。当然,夹角的余弦等同于向量的内积。从理论上讲,这种算法非常好。但是计算时间特别长。通常,我们要处理的文章的数量都 很大,至少在百万篇以上,二次回标有非常长,比如说有五十万个词(包括人名地名产品名称等等)。如果想通过对一百万篇文章两篇两篇地成对比较,来找出所有 共同主题的文章,就要比较五千亿对文章。现在的计算机一秒钟最多可以比较一千对文章,完成这一百万篇文章相关性比较就需要十五年时间。注意,要真正完成文 章的分类还要反复重复上述计算。

在文本分类中,另一种办法是利用矩阵运算中的奇异值分解(Singular Value Decomposition,简称 SVD)。现在让我们来看看 奇异值分解是怎么回事。首先,我们可以用一个大矩阵A来描述这一百万篇文章和五十万词的关联性。这个矩阵中,每一行对应一篇文章,每一列对应一个词。

在上面的图中,M=1,000,000,N=500,000。第 i 行,第 j 列的元素,是字典中第 j 个词在第 i 篇文章中出现的加权词频(比如,TF/IDF)。读者可能已经注意到了,这个矩阵非常大,有一百万乘以五十万,即五千亿个元素。

奇异值分解就是把上面这样一个大矩阵,分解成三个小矩阵相乘,如下图所示。比如把上面的例子中的矩阵分解成一个一百万乘以一百的矩阵X,一个一百乘以一百 的矩阵B,和一个一百乘以五十万的矩阵Y。这三个矩阵的元素总数加起来也不过1.5亿,仅仅是原来的三千分之一。相应的存储量和计算量都会小三个数量级以 上。

三个矩阵有非常清楚的物理含义。第一个矩阵X中的每一行表示意思相关的一类词,其中的每个非零元素表示这类词中每个词的重要性(或者说相关性),数值越大 越相关。最后一个矩阵Y中的每一列表示同一主题一类文章,其中每个元素表示这类文章中每篇文章的相关性。中间的矩阵则表示类词和文章雷之间的相关性。因 此,我们只要对关联矩阵A进行一次奇异值分解,w 我们就可以同时完成了近义词分类和文章的分类。(同时得到每类文章和每类词的相关性)。

现在剩下的唯一问题,就是如何用计算机进行奇异值分解。这时,线性代数中的许多概念,比如矩阵的特征值等等,以及数值分析的各种算法就统统用上了。在很长 时间内,奇异值分解都无法并行处理。(虽然 Google 早就有了MapReduce 等并行计算的工具,但是由于奇异值分解很难拆成不相关子运算,即 使在 Google 内部以前也无法利用并行计算的优势来分解矩阵。)最近,Google 中国的张智威博士和几个中国的工程师及实习生已经实现了奇异值 分解的并行算法,我认为这是 Google 中国对世界的一个贡献。

来源:http://googlechinablog.com/2007/01/blog-post.html
--  

相关文章推荐

数学之美系列十八:矩阵运算和文本处理中的分类问题

我在大学学习线性代数时,实在想不出它除了告诉我们如何解线性方程外,还能有什么别的用途。关于矩阵的许多概念,比如特征值等等,更是脱离日常生活。后来在数值分析中又学了很多矩阵的近似算法,还是看不到可以应用...
  • RFC2008
  • RFC2008
  • 2012年05月01日 16:35
  • 768

数学之美 系列十八 - 矩阵运算和文本处理中的分类问题

2007年1月1日 下午 03:10:00 发表者:Google 研究员,吴军  我在大学学习线性代数时,实在想不出它除了告诉我们如何解线性方程外,还能有什么别的用途。关于矩阵的许多概念,...
  • cai0538
  • cai0538
  • 2012年04月07日 18:05
  • 524

SVD分解的应用——矩阵运算和文本处理中的分类问题

在自然语言处理中,最常见的两类的分 类问题分别是,将文本按主题归类(比如将所有介绍亚运会的新闻归到体育类)和将词汇表中的字词按意思归类(比如将各种体育运动的名称个归成一类)。这两种 分类问题都可用通过...

文本处理中的两个分类问题和矩阵运算SVD

部分内容摘自吴军老师著《数学之美》,本文章主要详细说明一下其中的矩阵运算奇异值分解SVD的意义。刚刚学完矩阵分析,里面有讲到奇异值分解,我觉得讲得还不错,理解起来很简单。矩阵书籍参考Carl D. M...

矩阵运算和文本处理中两个分类的问题

矩阵运算和文本处理中两个分类的问题   文本和词汇的矩阵 在NLP中,最常见的两个分类是,将文本按主题归类 和 将词汇表中的字词按意思归类。——都可以用矩阵计算圆满解决。 分类的本质是 聚类问...

白话scala系列四 scala矩阵运算和操作

在做数据挖掘和机器学习项目的时候发现矩阵运算需要经常用到,虽然Java中提供了Jama包能实现大部分需求,但是无法满足定制化需求。我们写spark程序的时候一般使用scala,所以用scala实现了一...

[机器学习算法详解]朴素贝叶斯算法—以词集文本分类问题为例

朴素贝叶斯算法—词集文本分类问题一 文本分类机器学习的一个重要应用是文本的自动分类。在文本分类中,这个文本是一个实例,由各种词汇构成,我们可以对新闻报道、用户留言、政府公文等其他任意类型的文本进行分类...

linux初学(十八)之linux命令文本处理工具

当你觉得处处不如人时,不要自卑,记得你只是平凡人。当别人忽略你时,不要伤心,每个人都有自己的生活,谁都不可能一直陪你。你可以哭,但哭过你必须要振作起来,即使输掉了一切,也不要输掉微笑。   文件浏...
  • lotluck
  • lotluck
  • 2015年07月31日 11:32
  • 300

用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践(转载)

近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类领域特别是应用深度学习解决文本分类的相关的思路、做法和部分实践的经验。 业...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【数学之美系列十八 】矩阵运算和文本处理中的分类问题
举报原因:
原因补充:

(最多只允许输入30个字)