关闭
当前搜索:

周志华《机器学习》勘误表

周志华老师的《机器学习》的勘误 原帖地址: http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/MLbook2016.htm 由于勘误是不断更新的,本博客并不会实时更新,因此建议看原贴,原贴是周老师实时更新的勘误,本博客只是部分勘误 勘误修订 [部分修订是为了更便于读者理解,并非原文有误] (第一版第十次印刷, 2016年9月):...
阅读(26) 评论(0)

《统计学习方法》勘误表

李航老师的统计学习方法堪称是机器学习、数据挖掘等方向必读之书,然而书中难免有部分错误。 于是李航老师更新了新的勘误表,转载作为收藏 详情参见:http://blog.sina.com.cn/s/blog_7ad48fee01017dpi.html#cmt_3285959...
阅读(27) 评论(0)

SMOTE过采样算法

为什么类别不平衡是不好的 从模型的训练过程来看         从训练模型的角度来说,如果某类的样本数量很少,那么这个类别所提供的“信息”就太少。         使用经验风险(模型在训练集上的平均损失)最小化作为模型的学习准则。设损失函数为0-1 loss(这是一种典型的均等代价的损失函数),那么优化目标就等价于错误率最小化(也就是accuracy最大化)。考虑极端情况:1000个训...
阅读(52) 评论(0)

Cannot open volume for direct access +++ Can unspecified error occurred

解决方案可见 [链接] (http://blog.csdn.net/weixin_37928818/article/details/70237232) 由于博客搬家当中,所以在此处续上以前的博客,还请老铁见谅啊...
阅读(39) 评论(0)

XGBoost算法解析和基于Scikit-learn的GBM算法实现

1. 概要Gradient Tree Boosting (别名 GBM, GBRT, GBDT, MART)是一类很常用的集成学习算法,在KDD Cup, Kaggle组织的很多数据挖掘竞赛中多次表现出在分类和回归任务上面最好的performance。同时在2010年Yahoo Learning to Rank Challenge中, 夺得冠军的LambdaMART算法也属于这一类算法。因此Tre...
阅读(38) 评论(0)

XGBoost参数调优完全指南(附Python代码)

原文地址:Complete Guide to Parameter Tuning in XGBoost by Aarshay Jain 原文翻译与校对:@MOLLY && 寒小阳 (hanxiaoyang.ml@gmail.com) 时间:2016年9月。 出处:http://blog.csdn.net/han_xiaoyang/article/details/52665396 声明:版权所...
阅读(36) 评论(0)

Python中Gradient Boosting Machine(GBM)调参方法详解

原文地址:Complete Guide to Parameter Tuning in Gradient Boosting (GBM) in Python by Aarshay Jain 原文翻译与校对:@酒酒Angie(drmr_anki@qq.com) && 寒小阳(hanxiaoyang.ml@gmail.com) 时间:2016年9月。 出处:http://blog.csdn.net/...
阅读(48) 评论(1)

系统资源不足 无法完成请求的服务

解决方案可见 链接(http://blog.csdn.net/weixin_37928818/article/details/70306004) 由于博客搬家当中,所以在此处续上以前的博客,还请老铁见谅啊...
阅读(91) 评论(0)

Error: For input string: "5000L" (state=,code=0)

解决方案可见 [链接] (http://blog.csdn.net/weixin_37928818/article/details/65449432) 由于博客搬家当中,所以在此处续上以前的博客,还请老铁见谅啊...
阅读(38) 评论(0)

强化学习之最基础篇(算法实现及基础案例学习)

本博客接着上一篇“强化学习之最基础篇”而来,是基于上一篇的博客进一步的探究,因为前一篇博客完全是对于基本概念的介绍以及基本算法的熟悉,这一篇便是偏应用,讲理论的算法加以实现,并且跑了一个小游戏从而感受一下强化学习的魅力。 背景:在PA公司实习期间,由于公司每周都会有分享会,大家轮着来分享自己的研究学习成果(我感觉其实很不错),然后就轮到了我,临危受命,老大让我这次分享强化学习,此前对此我一无所知...
阅读(56) 评论(0)

强化学习之最基础篇

强化学习之最基础篇...
阅读(127) 评论(0)
    个人资料
    • 访问:559次
    • 积分:85
    • 等级:
    • 排名:千里之外
    • 原创:6篇
    • 转载:5篇
    • 译文:0篇
    • 评论:1条
    文章分类
    文章存档
    最新评论