
机器学习
传统机器学习
Zhang_P_Y
关注机器学习、计算机视觉、嵌入式(MCU、DSP、ARM)和桌面开发等领域
展开
-
【深度学习技术】如何用C++加载pytorch模型并进行推理部署(二)
关于如何控制图像输入pytorch C++以及输出的处理方法,可以????https://pengyizhang.github.io/2020/03/19/pytorch_script_cplusplusv2/原创 2020-03-19 09:50:30 · 947 阅读 · 0 评论 -
【深度学习技术】如何用C++加载pytorch模型并进行推理部署
训练好的pytorch模型,不想再用C++把模型实现,而只想用C++进行模型部署,那么可以参考下面的文档:https://pengyizhang.github.io/2020/03/19/pytorch_script_cplusplus/Step 1: Converting Your PyTorch Model to Torch ScriptStep 2: Serializing Yo...原创 2020-03-19 08:54:38 · 1837 阅读 · 0 评论 -
Andrew Ng机器学习课程17(2)
Andrew Ng机器学习课程17(2)声明:引用请注明出处http://blog.csdn.net/lg1259156776/说明:主要介绍了利用value iteration和policy iteration两种迭代算法求解MDP问题,还介绍了在实际应用中如何通过积累“经验”更新对转移概率和reward的估计的学习模型,并结合两种迭代算法进行求解的完整过程。原创 2015-10-11 21:40:30 · 1645 阅读 · 0 评论 -
【机器学习】ICA特征提取
看完了ICA的一整套原理介绍后,感觉完整的介绍和andrew ng的课程中的ICA特征提取关系不是很大;在ICA的理论中,主要用于盲源分离的,也就是混合的观测数据X,通过一个正交的且其范数为1的分离矩阵W(其实是实现旋转变换),分解为相互独立的原始信号数据S=WX。(这里要求S,W,X都为n*n的矩阵)学习完成后自己有一些理解和不解。数据处理在实际的造作过程中,先通过均值削转载 2016-04-12 12:33:12 · 4262 阅读 · 0 评论 -
【机器学习】QQ-plot深入理解与实现
QQ-plot深入理解与实现26JUNJune 26, 2013最近在看关于CSI(Channel State Information)相关的论文,发现论文中用到了QQ-plot。Sigh!我承认我是第一次见到这个名词,异常陌生。维基百科给出了如下定义:“在统计学中,QQ-plot(Q代表分位数Quantile)是一种通过画出分位数来比较两个概率分布的图形方法。首先选定转载 2016-04-17 16:11:11 · 12920 阅读 · 3 评论 -
【机器学习】Matlab中实现QQ-plot的一个好工具gqqplot
Matlab中实现QQ-plot的一个好工具gqqplot26JUNJune 26, 2013这几天看了一下QQ-plot以及在Matlab中的实现,可是Matlab自带的qqplot函数不能满足我的使用,因此在网上搜索到了一个好工具:gqqplot。gqqplot可以于很多常见的分布进行比较,而qqplot仅仅可以比较正态分布。其zip文件下载链接:gqqplotgq转载 2016-04-17 16:51:25 · 5516 阅读 · 2 评论 -
【机器学习】贝叶斯决策论小结
贝叶斯决策论是解决模式分类问题的一种基本统计途径。其假设:决策问题可以用概率的形式来描述,并且所有有关的概率结构均已知。现对其进行一下简单的总结。贝叶斯决策准则 按照不同决策标准,会得到不同意义下的最优决策。 最小错误率准则 最小风险准则 最小最大决策准则 Neyman-Pearson准则最小错误率准则 若样本x为类别wj的概率为转载 2016-07-25 10:25:06 · 3006 阅读 · 0 评论 -
【机器学习】【数字信号处理】矢量量化(Vector Quantization)
http://blog.csdn.net/zouxy09 这学期有《语音信号处理》这门课,快考试了,所以也要了解了解相关的知识点。呵呵,平时没怎么听课,现在只能抱佛脚了。顺便也总结总结,好让自己的知识架构清晰点,也和大家分享下。下面总结的是第三个知识点:VQ。因为花的时间不多,所以可能会有不少说的不妥的地方,还望大家指正。谢谢。 矢量量化转载 2016-08-05 10:34:20 · 5324 阅读 · 1 评论 -
【机器学习】聚类算法:ISODATA算法
在之前的K-Means算法中,有两大缺陷: (1)K值是事先选好的固定的值 (2)随机种子选取可能对结果有影响 针对缺陷(2),我们提出了K-Means++算法,它使得随机种子选取非常合理,进而使得算法更加完美。但是缺陷(1)始终没有解决,也就是说在K-Means算法中K值得选取是事先选好固定的一个值,当时也提出ISODATA算转载 2016-08-05 10:52:36 · 10615 阅读 · 1 评论 -
【机器学习】聚类算法:层次聚类、K-means聚类
聚类算法实践(一)——层次聚类、K-means聚类摘要: 所谓聚类,就是将相似的事物聚集在一 起,而将不相似的事物划分到不同的类别的过程,是数据分析之中十分重要的一种手段。比如古典生物学之中,人们通过物种的形貌特征将其分门别类,可以说就是 一种朴素的人工聚类。 ... 所谓聚类,就是将相似的事物聚集在一 起,而转载 2016-08-05 11:08:47 · 10104 阅读 · 1 评论 -
【机器学习】聚类算法:层次聚类
本文是“漫谈 Clustering 系列”中的第 8 篇,参见本系列的其他文章。系列不小心又拖了好久,其实正儿八经的 blog 也好久没有写了,因为比较忙嘛,不过觉得 Hierarchical Clustering 这个话题我能说的东西应该不多,所以还是先写了吧(我准备这次一个公式都不贴 )。Hierarchical Clustering 正如它字面上的意思那样,是层次化的聚类,得出转载 2016-08-05 11:11:36 · 4048 阅读 · 0 评论 -
【机器学习】ICA算法简介
ICA算法的研究可分为基于信息论准则的迭代估计方法和基于统计学的代数方法两大类,从原理上来说,它们都是利用了源信号的独立性和非高斯性。基于信息论的方法研究中,各国学者从最大熵、最小互信息、最大似然和负熵最大化等角度提出了一系列估计算法。如FastICA算法, Infomax算法,最大似然估计算法等。基于统计学的方法主要有二阶累积量、四阶累积量等高阶累积量方法。一:最大似然估计算法1转载 2016-04-12 12:32:15 · 16119 阅读 · 1 评论 -
【机器学习】ICA 原理以及相关概率论,信息论知识简介
看完了sparse coding,开始看ICA模型,本来ng的教程上面就只有一个简短的介绍,怎奈自己有强迫症,爱钻牛角尖,于是乎就搜索了一些ICA的介绍文章(都是从百度文库中搜来的),看完之后感觉这个略懂一二,遂写文以记之,一为加深印象,二为分享交流。一:引言ICA IndependentComponent Analysis 又名独立分量分析。ICA是20世纪90年代发展转载 2016-04-12 12:31:12 · 5748 阅读 · 1 评论 -
【机器学习】数据处理中白化Whitening的作用图解分析
之前在看斯坦福教程中whiteining这一章时,由于原始图像相邻像素值具有高度相关性,所以图像数据信息冗余,对于白化的作用的描述主要有两个方面:1,减少特征之间的相关性;2,特征具有相同的方差(协方差阵为1);但是为什么这么做,以及这样做对于算法或者数据有什么好处,一直雨里雾里的,最近看了ICA的数据预处理之后,发现一个教程图解的白化方法和作用很好。白化,又称漂白或者球化;是对原始数据x转载 2016-04-12 12:24:51 · 10309 阅读 · 0 评论 -
Andrew Ng机器学习课程17(1)
Andrew Ng机器学习课程17声明:引用请注明出处http://blog.csdn.net/lg1259156776/说明:主要介绍了强化学习与监督学习的设定上的区别,以及强化学习的框架,结合着马尔可夫决策过程来公式化描述强化学习通常的形式。原创 2015-10-10 23:28:59 · 1626 阅读 · 0 评论 -
Haar-like特征来龙去脉
Haar-like特征来龙去脉声明:引用请注明出处http://blog.csdn.net/lg1259156776/ haar-like特征概念haar-like特征是是计算机视觉领域一种常用的特征描述算子。它最早是由Papageorigiou等人用于人脸描述。目前常用的Haar-like特征可以分为三类:线性特征、边缘特征、点特征(中心特征)、对角线特征。如下图所示 Haar特征(Haar-原创 2015-09-23 11:20:55 · 13685 阅读 · 0 评论 -
假设检验与判决准则(一)
假设检验与判决准则(一)说明:这里是统计信号处理中的关于信号检测的内容,本文讲述了假设检验的基本框架以及判决准则中的最大后验概率判决准则,并进一步讨论了似然比与门限电平,第一类错误:虚警和第二类错误:漏警,最后给出了一般的信号检测系统构成。后续博文将陆续更新其他类型的判决准则及其相关的内容。原创 2015-10-13 11:16:00 · 3454 阅读 · 0 评论 -
【随机过程】随机过程之泊松过程的推广
【随机过程】随机过程之泊松过程的推广声明:引用请注明出处http://blog.csdn.net/lg1259156776/泊松过程的两个定义def 1: 计数过程,增量独立,增量服从泊松分布; def 2: 增量独立,增量平稳,增量的一般性(足够小的时间里事情发生的次数超过1件的概率是时间段的一个高阶无穷小量)。两个概念是等同的。泊松过程的建模稀有时间,短时间内为小概率事件,但长期看来却具有原创 2015-10-27 16:02:18 · 3447 阅读 · 0 评论 -
【随机过程】随机过程之泊松过程的直观理解
【随机过程】随机过程之泊松过程的直观理解声明:引用请注明出处http://blog.csdn.net/lg1259156776/泊松过程一个经典的case是这样子的:一条工艺装配线,由若干个元件构成,消耗品,每个元件都会损坏并更换。元件的更换就是一个泊松过程,N(t) = n表示从0到t的时间里元件更换了n次,t为观测点,那么SN(t)S_{N(t)}表示的是第n次更换元件的时刻,而SN(t)+1S原创 2015-10-27 16:00:03 · 9409 阅读 · 0 评论 -
【随机过程】随机过程之更新过程(1)
【随机过程】随机过程之更新过程(1)标签(空格分隔): 【信号处理】声明:引用请注明出处http://blog.csdn.net/lg1259156776/相比泊松过程,更新过程约束更少,算是对泊松过程的一个推广。我们知道下面的几个定义是可以推出泊松过程的: 1. 随机变量XiX_i独立同分布(iid),服从的是参数为λ\lambda指数分布;对应到达时间间隔 2. 随机变量Sin=∑ni=1X原创 2015-11-02 23:05:00 · 5200 阅读 · 0 评论 -
【随机过程】随机过程之更新过程(2)
【随机过程】随机过程之更新过程(2)标签(空格分隔): 【信号处理】声明:引用请注明出处http://blog.csdn.net/lg1259156776/说明:关于更新过程,内容也不少,但是核心的知识点也只有几个,通过一个主要的例子,将大部分重要的概念加以梳理,会是一个很好的理解的方法。几个概念与泊松过程一样,几个重要概念无外乎XiX_i,SnS_n,N(t)N(t)。XiX_i在泊松过程中是到达原创 2015-11-02 23:06:07 · 8566 阅读 · 0 评论 -
机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总
《Brief History of Machine Learning》介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、SVM、Adaboost到随机森林、Deep Learning.《Deep Learning in Neural Networks: An Overview》介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最转载 2016-02-28 12:31:12 · 7091 阅读 · 0 评论 -
【机器学习】最小中值平方法
最小中值平方法最小中值平方法是通过求解下面的非线性最小问题来估计参数的LMedS记录的是所有样本中,偏差值居中的那个样本的偏差,这种方法对错误匹配和外点有很好的鲁棒性。不像M-estimator,LMedS问题不能直接化简为带权重的最小二乘问题,对于LMedS估计没有一个具体的公式。LMedS是从样本中随机抽选出一个样本子集,使用LS对子集计算模型参数,然后转载 2016-03-24 20:54:46 · 2967 阅读 · 0 评论 -
【机器学习】Linear least squares, Lasso,ridge regression有何本质区别?
Linear least squares, Lasso,ridge regression有何本质区别?Linear least squares, Lasso,ridge regression有何本质区别?还有ridge regression uses L2 regularization; and Lasso uses L1 regularization.L1和L2一般如转载 2016-08-07 22:53:52 · 2900 阅读 · 0 评论 -
【机器学习】HK算法(LMSE算法) LMS算法改进保证线性可分时均方误差标准能够找到线性可分的超平面
1.其实HK算法思想很朴实,就是在最小均方误差准则下求得权矢量。他相对于感知器算法的优点在于,他适用于线性可分和非线性可分得情况,对于线性可分的情况,给出最优权矢量,对于非线性可分得情况,能够判别出来,以退出迭代过程。2.在程序编制过程中,我所受的最大困扰是:关于收敛条件的判决。对于误差矢量:e=x*w-b若e>0 则继续迭代若e=0 则停止迭代,得到权矢量转载 2016-08-07 23:30:30 · 6696 阅读 · 3 评论 -
【计算机视觉】<资料站点>计算机视觉、模式识别、机器学习常用牛人主页链接
计算机视觉、模式识别、机器学习常用牛人主页链接 牛人主页(主页有很多论文代码)Serge Belongie at UC San DiegoAntonio Torralba at MITAlexei Ffros at CMUCe Liu at Microsoft Research New EnglandVittorio Ferr转载 2016-09-11 17:09:29 · 1377 阅读 · 0 评论 -
【机器学习】转导推理——Transductive Learning
在统计学习中,转导推理(Transductive Inference)是一种通过观察特定的训练样本,进而预测特定的测试样本的方法。另一方面,归纳推理(Induction Inference)先从训练样本中学习得到通过的规则,再利用规则判断测试样本。然而有些转导推理的预测无法由归纳推理获得,这是因为转导推理在不同的测试集上会产生相互不一致的预测,这也是最令转导推理的学者感兴趣的地方。转载 2016-10-07 16:18:38 · 4431 阅读 · 0 评论 -
【机器学习】半监督学习几种方法
转自:http://jiangkeke.blog.hexun.com/42322032_d.html1.Self-training algorithm(自训练算法)这个是最早提出的一种研究半监督学习的算法,也是一种最简单的半监督学习算法.2.Multi-view algorithm(多视角算法)一般多用于可以进行自然特征分裂的数据集中.考虑特殊情况(每个数据点表征两转载 2016-10-07 18:29:05 · 13284 阅读 · 0 评论 -
【机器学习】半监督学习
传统的机器学习技术分为两类,一类是无监督学习,一类是监督学习。无监督学习只利用未标记的样本集,而监督学习则只利用标记的样本集进行学习。但在很多实际问题中,只有少量的带有标记的数据,因为对数据进行标记的代价有时很高,比如在生物学中,对某种蛋白质的结构分析或者功能鉴定,可能会花上生物学家很多年的工作,而大量的未标记的数据却很容易得到。这就促使能同时利用标记样本和未标记样本的半监转载 2017-10-03 10:18:57 · 6208 阅读 · 0 评论 -
【机器学习】在分类中如何处理训练集中不平衡问题
原文地址:一只鸟的天空,http://blog.csdn.net/heyongluoyao8/article/details/49408131在分类中如何处理训练集中不平衡问题 在很多机器学习任务中,训练集中可能会存在某个或某些类别下的样本数远大于另一些类别下的样本数目。即类别不平衡,为了使得学习达到更好的效果,因此需要解决该类别不平衡问题。Jason Brownlee的回答:原文标题:8 Ta...转载 2018-06-14 17:07:16 · 2478 阅读 · 0 评论 -
【机器学习】机器学习分类器模型评价指标
机器学习分类器模型评价指标分类器评价指标主要有:1,Accuracy2,Precision 3,Recall 4,F1 score 5,ROC 曲线6,AUC7,PR 曲线混淆矩阵混淆矩阵是监督学习中的一种可视化工具,主要用于比较分类结果和实例的真实信息。矩阵中的每一行代表实例的预测类别,每一列代表实例的真实类别。真正(True Positive , TP):被模型预测为正的正样本。假正(Fals...转载 2018-06-14 17:13:42 · 2341 阅读 · 0 评论 -
[机器学习] 模式识别(1) 贝叶斯决策与概率密度估计
[机器学习] 模式识别(1) 贝叶斯决策与概率密度估计https://mbd.baidu.com/newspage/data/landingshare?context=%7B%22nid%22%3A%22news_9638783545800755583%22%2C%22sourceFrom%22%3A%22bjh%22%2C%22url_data%22%3A%22bjhauthor%22%7D...原创 2019-01-25 09:28:10 · 685 阅读 · 0 评论 -
[机器学习] 模式识别(2) 核密度估计与最近邻分类器
[机器学习] 模式识别(2) 核密度估计与最近邻分类器https://mbd.baidu.com/newspage/data/landingshare?context=%7B%22nid%22%3A%22news_9041910037862543356%22%2C%22sourceFrom%22%3A%22bjh%22%2C%22url_data%22%3A%22bjhauthor%22%7D...原创 2019-01-26 10:49:16 · 1329 阅读 · 0 评论 -
[机器学习] 值得收藏20张机器学习算法小卡片
[机器学习] 值得收藏20张机器学习算法小卡片原创 2019-02-03 20:45:50 · 1026 阅读 · 1 评论 -
【机器学习】Learning to Rank入门小结 + 漫谈
Learning to Rank入门小结 + 漫谈Learning to Rank入门小结Table of Contents1 前言2 LTR流程3 训练数据的获取4 特征抽取3.1 人工标注3.2 搜索日志3.3 公共数据集5 模型训练5.1 训练方法5.1.1 Pointwise5.1.2 Pairwise5.1.3 Li转载 2016-10-07 15:45:12 · 2684 阅读 · 0 评论 -
【机器学习】Learning to Rank 简介
Learning to Rank 简介 去年实习时,因为项目需要,接触了一下Learning to Rank(以下简称L2R),感觉很有意思,也有很大的应用价值。L2R将机器学习的技术很好的应用到了排序中,并提出了一些新的理论和算法,不仅有效地解决了排序的问题,其中一些算法(比如LambdaRank)的思想非常新颖,可以在其他领域中进行借鉴。鉴于排序在许多领域中的核心地位,L2R可以被广转载 2016-10-07 15:23:37 · 3555 阅读 · 0 评论 -
【机器学习】【计算机视觉】人体行为识别特征点提取小综述
Reading papers_10(人体行为识别特征点提取小综述) 这是本学期一门课程的论文。(注:本人看过的行为识别特征提取方面的文章就10来篇,所以本综述大部分内容是参考其他人的综述的,有些并不是自己的成果,个人功底还没这么雄厚…) 行为识别特征提取综述 摘要 人体行为识别目前处在动作识别阶段,而动作识别可以看成是特征提取和分类器设计相结合转载 2016-09-19 21:23:47 · 14610 阅读 · 0 评论 -
【机器学习】【神经网络与深度学习】不均匀正负样本分布下的机器学习 《讨论集》
39 条精选讨论(选自165条原始评论和转发) 机器学习那些事儿 2014-11-15 17:48工业界机器学习典型问题: 正负样本分布极不均匀(通常@老师木 @李沐M @星空下的巫师@徐盈辉_仁基北冥乘海生 转发于 2014-11-15 17:50这个跟模型的形式和估计方法都有关,有些情况下正负例不均衡时估计有偏,可以校正一下。小兔转载 2016-09-21 14:07:08 · 13045 阅读 · 0 评论 -
【Python开发】Python 适合大数据量的处理吗?
Python 适合大数据量的处理吗?python 能处理数据库中百万行级的数据吗?处理大规模数据时有那些常用的python库,他们有什么优缺点?适用范围如何?1 条评论 分享默认排序按时间排序15 个回答118赞同反对,不会显示你的姓名王守崑 有意 NLP/对转载 2016-10-01 14:47:38 · 9344 阅读 · 1 评论 -
【机器学习】【计算机视觉】数据挖掘测试数据集大全
数据挖掘测试数据集大全 关于源代码,网上有很多公开源码的算法包,例如最为著名的Weka,MLC++等。Weka还在不断的更新其算法,下载地址:http://www.cs.waikato.ac.nz/ml/weka/ftp://pami.sjtu.edu.cnhttp://www.ics.uci.edu/~mlearn/MLRepository.htmstatlib转载 2016-11-07 20:48:57 · 2903 阅读 · 0 评论