机器学习技法总结(一):支持向量机(linear support vector machine,dual support vector machine)

原创 2015年07月08日 20:38:33

第一阶段技法:

large margin (the relationship between large marin and regularization), hard-SVM,soft-SVM,dual problem(解对偶问题),kernel trick,kernel logistic regression,

主要思路是:(这里不区分线性与非线性,差别只是特征空间转换,X空间与Z空间的关系)

1. 从PLA出发,对于二维平面的二分类问题,PLA可能得出一堆能够正确分类的直线,但是哪一条直线会是最好的呢?我们应当如何评价分类的好坏呢?从而导出了large margin 和 support vector的概念。

具有large margin的那条直线具有更好的抗干扰能力,鲁棒性好。而影响margin大小的其实就是在fat边界上的那些数据,这些数据叫做support vector(candidate)。所以,就有了这样的一个优化目标,如何通过调节w使得margin最大。后面就是一系列的数学优化推导,最后转化为二次规划问题得到解决。

下面说明large margin背后所隐藏的一些可以解释为何large margin会“好”的原因:1)从regularization角度看,large margin所对应的优化函数,类似于加了regularizer的线性分类/回归问题,也就是说,large margin对应着regularization;

2)从VC dimension的角度来讲,large margin其实是减少了hypothesis能够shutter的dichotomy(二分类)的数量,也就是说减少了VC dimension,使得模型可以控制overfitting。


2. 我们另一个动机就是:能不能将X特征空间转化到无限维度的特征空间呢?同时为了保证Hoeffding's 不等式对VC dimension的限制及计算量上的限制,则希望转化后的Z空间的VC dimension不跟W的自由度d相关。


因此,开始研究svm的dual problem(对偶问题)。在不断的推导和求解dual support vector machine问题时,用到了著名的KKT条件:

通过上面给的推导和解释,我们可以看到,实际上W值是由on fat boundary上面的support vector线性表出的(这就是后面要讲到的表示定理)。数学的推导与理论分析都说明support vector才是主导我们进行模型选择所用到的数据。


所以,现在重新限制support vector,刚开始我们提出的边界上的data叫做support vector(candidate),而这个通过解dual问题得到的决定W的alpha不为零的data就叫做support vector。


回想PLA,类似support vector machine,这个W都是可以通过样本点线性表出的;PLA实际上是通过犯错误的点表出,而support vector machine则是通过support vector线性表出的。


这就是原始的svm和dual svm的对比。

到目前为止,我们还没有解决W的维度d和计算量的评估,下面将通过一个叫做kernel  trick的方法,实现无限维度的特征转换。





版权声明:本文为博主原创文章,转载请注明出处http://blog.csdn.net/lg1259156776/。

相关文章推荐

机器学习——支持向量机support vector machine

支持向量机是与统计机器理论相关的机器学习算法,在1992年首次引入。SVM之所以流行,源于其对手写数字识别的错误率达到1.1%,与一个精确构建的神经网络的错误率相当。SVM现在被认为是kernel m...

第八讲. 支持向量机进行机器学习——Support Vector Machine

http://blog.csdn.net/abcjennifer/article/details/7849812 本栏目(Machine learning)包括单参数的线性回归、多参数的线性...
  • Erli11
  • Erli11
  • 2014-06-23 10:32
  • 9067

机器学习第五篇(stanford大学公开课学习笔记) —支持向量机(Support Vector Machine)

支持向量机(SVM)是一种可训练的机器学习算法,

机器学习(一)支持向量机(Support Vector Machine)

1.SVM简介1.1 什么是支持向量机支持向量机(Support vector machine)通常用在机器学习 (Machine learning)。是一种监督式学习 (Supervised Lea...

机器学习与深度学习(三) 支持向量机 (Support Vector Machine) SVM

____tz_zs学习笔记 其他学习资料: 支持向量机通俗导论(理解SVM的三层境界) http://blog.csdn.net/v_july_v/article/details/762483...
  • tz_zs
  • tz_zs
  • 2017-06-29 21:13
  • 73

[机器学习入门] 李宏毅机器学习笔记-26(Structured Support Vector Machine part 1;结构化支持向量机part 1)

[机器学习入门] 李宏毅机器学习笔记-26(Structured Support Vector Machine part1 ;机构化支持向量机part 1) PDF VIDEO 首先回顾一下...

[机器学习入门] 李宏毅机器学习笔记-23(Support Vector Machine;支持向量机)

[机器学习入门] 李宏毅机器学习笔记-23(Support Vector Machine;支持向量机) PDF VIDEOSupport Vector Machine Outline Hin...

台湾大学林轩田机器学习技法课程学习笔记2 -- Dual Support Vector Machine

上节课我们主要介绍了线性支持向量机(Linear Support Vector Machine)。Linear SVM的目标是找出最“胖”的分割线进行正负类的分离,方法是使用二次规划来求出分类线。本节...

机器学习技法 笔记二 dual support vector machine

接着上一章说=。= 上一章看上去其实已经挺不错的了,但是实际上,我们仔细思考还是有一些问题需要解决的。 例如,当我们需要做非线性的划分的时候,我们可以考虑转换到Z空间,在Z空间做线性划分,再回到原...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)