数据结构—线索化二叉树(中序)

原创 2016年06月01日 17:57:21
/*
线索化二叉树。
(1)中序线索化二叉树;
(2)遍历线索化二叉树。
*/
#include <iostream>
#include <malloc.h>
#define MaxSize 100
typedef char ElemType;
using namespace std;
typedef struct node
{
    ElemType data;
    int ltag,rtag;
    struct node *lchild;
    struct node *rchild;
} TBTNode;

/*
对以*p为根节点的二叉树中序线索化。
算法思路:
 在指针不为NULL时,先对*p节点的左子树线索化,若*p没有左孩子节点,则将其lchild指针线索化为指向其前驱节点*pre,将其ltag置为1,
 若*pre节点的rchild指针为NULL,将其rchild指针线索化为指向其后继节点*p,将其rtag置为1;最后对*p节点的右子树线索化。
*/
TBTNode *pre;
void Thread(TBTNode *&p)
//先对*p进行前驱节点线索化,再对*pre进行后继节点线索化,而并不是*p的后继节点,方便。
{
    if(p!=NULL)
    {
        Thread(p->lchild);     //左子树线索化
        if(p->lchild==NULL)    //*p左孩子不存在:进行前驱节点线索化
        {
            p->lchild=pre;
            p->ltag=1;
        }
        else
            p->ltag=0;
        if(pre->rchild==NULL)   //*pre右孩子不存在,进行后继节点线索化
        {
            pre->rchild=p;
            pre->rtag=1;
        }
        else
            pre->rtag=0;
        pre=p;
        Thread(p->rchild);     //右子树线索化
    }
}

/*
将以二叉链存储的二叉树b进行中序线索化,并返回线索化后头节点指针root。
*/
TBTNode *CreaThread(TBTNode *b)   //中序线索化二叉树
{
    TBTNode *root;
    root=(TBTNode *)malloc(sizeof(TBTNode));
    root->ltag=0;
    root->rtag=1;             //建立头节点
    root->rchild=b;           //建立头节点与二叉树的联系
    if(b==NULL)
        root->lchild=root;    //空二叉树
    else
    {
        root->lchild=b;
        pre=root;
        Thread(b);            //中序遍历线索化二叉树
        //最后处理,加入指向头节点的线索
        pre->rchild=root;
        pre->rtag=1;
        root->rchild=pre;      //头节点右线索化
    }
    return root;
}

void CreateTBTNode(TBTNode * &b,char *str)
{
    TBTNode *St[MaxSize],*p=NULL;
    int top=-1,k,j=0;
    char ch;
    b=NULL;             //建立的二叉树初始时为空
    ch=str[j];
    while (ch!='\0')    //str未扫描完时循环
    {
        switch(ch)
        {
        case '(':
            top++;
            St[top]=p;
            k=1;
            break;      //为左结点
        case ')':
            top--;
            break;
        case ',':
            k=2;
            break;                          //为右结点
        default:
            p=(TBTNode *)malloc(sizeof(TBTNode));
            p->data=ch;
            p->lchild=p->rchild=NULL;
            if (b==NULL)                    //*p为二叉树的根结点
                b=p;
            else                            //已建立二叉树根结点
            {
                switch(k)
                {
                case 1:
                    St[top]->lchild=p;
                    break;
                case 2:
                    St[top]->rchild=p;
                    break;
                }
            }
        }
        j++;
        ch=str[j];
    }
}

void DispTBTNode(TBTNode *b)  //输出二叉树
{
    if(b!=NULL)
    {
        cout<<b->data;
        if(b->lchild!=NULL||b->rchild!=NULL)
        {
            cout<<"(";       //有孩子节点才输出
            DispTBTNode(b->lchild);   //递归处理左子树
            if(b->rchild!=NULL)
                cout<<",";          //有右孩子节点时才输出
            DispTBTNode(b->rchild);   //递归处理右子树
            cout<<")";             //有孩子节点时才输出
        }
    }
}

/*
遍历线索化二叉树:
  算法思想:
     遍历某种次序的线索二叉树,从该次序的开始节点出发;反复找到该节点在该次序下的后继节点,直到终端节点,
     其rchild指针被线索化为指向头节点。
  (在中序二叉树中,开始节点就是根节点的最左下节点)
*/
void ThInOrder(TBTNode *tb)
{
    TBTNode *p=tb->lchild;      //指向根结点
    while (p!=tb)
    {
        while (p->ltag==0)     //找开始节点
            p=p->lchild;
        cout<<p->data<<" ";   //访问开始节点
        while (p->rtag==1 && p->rchild!=tb)
        {
            p=p->rchild;
            cout<<p->data<<" ";
        }
        p=p->rchild;
    }
}

int main()
{
    TBTNode *b,*tb;
    CreateTBTNode(b,"A(B(D(,G)),C(E,F))");
    cout<<" 二叉树:";
    DispTBTNode(b);
    cout<<endl;
    tb=CreaThread(b);
    cout<<" 线索中序序列:";
    ThInOrder(tb);
    cout<<endl;
    return 0;
}

运行结果:


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

彻底理解线索二叉树

一、线索二叉树的原理     通过考察各种二叉链表,不管儿叉树的形态如何,空链域的个数总是多过非空链域的个数。准确的说,n各结点的二叉链表共有2n个链域,非空链域为n-1个,但其中的空链域却有n...

二叉树线索化以及线索化的先序、中序、后序遍历

二叉树线索化以及线索化的先序、中序、后序遍历 有详细的图解 和 程序代码 解读,以及 为什么要线索化二叉树...

数据结构-------------线索二叉树(c语言)

一、线索二叉树        如果二叉树的节点包含数据域和两个指针域( lchild 和 rchild ),当节点没有下一个节点时,将指针域赋值为空(NULL),但有时会造成很大的浪费,所以可以将空...

二叉树的线索化

线索二叉树(Threaded BinaryTree) 1.线索二叉树的基本概念       遍历二叉树是以一定规则将二叉树中的结点排列成一个线性序列,得到二叉树中结点的先序序列、中序序列或后序序列。 ...

线索二叉树原理及前序、中序线索化(Java版)

一、线索二叉树原理      前面介绍二叉树原理及特殊二叉树文章中提到,二叉树可以使用两种存储结构:顺序存储和二叉链表。在使用二叉链表的存储结构的过程中,会存在大量的空指针域,为了充分利用这些空指针域...

线索化二叉树C++

线索化二叉树 1.创建二叉树 2.先序递归遍历输出二叉树 3.线索化二叉树 4.输出线索化二叉树...
  • J_Anson
  • J_Anson
  • 2015年11月19日 10:15
  • 627

二叉树的线索化

【版权声明:转载请保留出处:blog.csdn.net/algorithm_only。邮箱:liuy0711@foxmail.com】 前面说到二叉树的二叉链表表示实现,当以二叉树作为存储结构时,只...

数据结构例程——线索化二叉树(中序)

本文是数据结构基础系列(6):树和二叉树中第14课时线索二叉树的例程。#include #include #define MaxSize 100 typedef char ElemType; typ...

YTU 3026: 中序线索化二叉树

3027: 中序线索化二叉树 时间限制: 1 Sec  内存限制: 128 MB 提交: 9  解决: 4 题目描述 已知一个二叉树的括号表示法如下: A(B(D,E(H(J,K(L,M(,...

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:数据结构—线索化二叉树(中序)
举报原因:
原因补充:

(最多只允许输入30个字)