数据结构—哈夫曼树

原创 2016年06月01日 21:32:27
/*
哈夫曼树。
*/
#include <iostream>
#include <malloc.h>
#define M 2*N-1
#define N 50
typedef char ElemType;
using namespace std;
typedef struct
{
    char data;     //节点值
    double weight;  //权值
    int parent;    //双亲节点
    int lchild;    //左孩子节点
    int rchild;    //右孩子节点
} HTNode;

typedef struct
{
    char cd[N];   //存放当前节点的哈夫曼编码
    int start;    //cd[start]~cd[n]存放哈夫曼编码
}HCode;
/*
算法思路:
    先将所有2n-1个节点的parent、lchild和rchild域置为初值-1,处理每个非叶子节点ht[i]:
    从ht[0]~ht[i-1]中找出根节点权值最小的两个,将它们作为ht[i]的左右子树,并将它们两个的双亲节点置为ht[i],
    并且ht[i]的权值为它们两个权值之和。如此操作,直到所有n-1个非叶子节点处理完毕。
*/
void CreateHT(HTNode ht[],int n)
{
    int i,k,lnode,rnode;
    double min1,min2;
    for (i=0; i<2*n-1; i++)         //所有结点的相关域置初值-1
        ht[i].parent=ht[i].lchild=ht[i].rchild=-1;
    for (i=n; i<2*n-1; i++)         //构造哈夫曼树
    {
        min1=min2=32767;            //lnode和rnode为最小权重的两个结点位置
        lnode=rnode=-1;
        for (k=0; k<=i-1; k++)
            if (ht[k].parent==-1)   //只在尚未构造二叉树的结点中查找
            {
                if (ht[k].weight<min1)
                {
                    min2=min1;
                    rnode=lnode;
                    min1=ht[k].weight;
                    lnode=k;
                }
                else if (ht[k].weight<min2)
                {
                    min2=ht[k].weight;
                    rnode=k;
                }
            }
        ht[i].weight=ht[lnode].weight+ht[rnode].weight;
        ht[i].lchild=lnode;
        ht[i].rchild=rnode;
        ht[lnode].parent=i;
        ht[rnode].parent=i;
    }
}

/*
以字符集合做叶子节点,以频率做权值构造哈夫曼树,规定哈夫曼树的左分支为0,右分支为1。

*/
void CreateHCode(HTNode ht[],HCode hcd[],int n)
{
    int i,f,c;
    HCode hc;
    for (i=0; i<n; i++) //根据哈夫曼树求哈夫曼编码
    {
        hc.start=n;
        c=i;
        f=ht[i].parent;
        while (f!=-1)               //循序直到树根结点
        {
            if (ht[f].lchild==c)    //处理左孩子结点
                hc.cd[hc.start--]='0';
            else                    //处理右孩子结点
                hc.cd[hc.start--]='1';
            c=f;
            f=ht[f].parent;
        }
        hc.start++;     //start指向哈夫曼编码最开始字符
        hcd[i]=hc;
    }
}

//输出哈夫曼编码
void DispHCode(HTNode ht[],HCode hcd[],int n)
{
    int i,k;
    double sum=0,m=0;
    int j;
    cout<<"  输出哈夫曼编码:\n"; //输出哈夫曼编码
    for (i=0; i<n; i++)
    {
        j=0;
        cout<<"      "<<ht[i].data<<":\t";
        for (k=hcd[i].start; k<=n; k++)
        {
            cout<<hcd[i].cd[k];
            j++;
        }
        m+=ht[i].weight;
        sum+=ht[i].weight*j;
        cout<<endl;
    }
    cout<<"\n  平均长度="<<1.0*sum/m<<endl;
}

int main()
{
     int n=8,i;      //n表示初始字符串的个数
    char str[]= {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'};
    double fnum[]= {0.07,0.19,0.02,0.06,0.32,0.03,0.21,0.1};
    HTNode ht[M];
    HCode hcd[N];
    for (i=0; i<n; i++)
    {
        ht[i].data=str[i];
        ht[i].weight=fnum[i];
    }
    cout<<endl;
    CreateHT(ht,n);
    CreateHCode(ht,hcd,n);
    DispHCode(ht,hcd,n);
    cout<<endl;
    return 0;
}

运行结果:


版权声明:本文为博主原创文章,未经博主允许不得转载。

数据结构—哈夫曼编码应用

构造一棵哈夫曼树,输出对应的哈夫曼编码和平均查找长度。并用表7.8所示的数据进行验证。 代码: #include #include #include #define M 2*N-1 #defi...
  • LY_624
  • LY_624
  • 2016年06月13日 16:21
  • 817

数据结构—哈夫曼树与哈夫曼编码

一,什么是哈夫曼树 哈夫曼树是一种带权路径长度最短的二叉树,也称为最优二叉树。下面用一幅图来说明。 它们的带权路径长度分别为: 图a: WPL=5*2+7*2+2*2+13*2=54 图b: WP...

数据结构哈夫曼树实验代码

  • 2016年02月18日 18:58
  • 928KB
  • 下载

数据结构课设 哈夫曼树

  • 2012年01月04日 13:35
  • 3KB
  • 下载

数据结构之哈夫曼树(c语言)

哈夫曼树 利用静态链表建立赫夫曼树,建树过程中要求左子树权值小于右子树权值,求各结点的编码。要求:叶子结点的个数n及结点值由键盘录入。本题给出程序代码,要求修改以满足测试要求.  #inclu...
  • wspxxy
  • wspxxy
  • 2014年06月13日 19:15
  • 1264

哈夫曼树编码译码 数据结构

  • 2008年12月17日 20:26
  • 2KB
  • 下载

【C++数据结构】哈夫曼树代码实现

HuffeManTree.h#pragma once #include "Stack.h" // 我自己写的栈 #include "Stack.cpp"template class CTree { ...

  数据结构-C语言-哈夫曼树

  • 2017年05月04日 17:19
  • 5KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:数据结构—哈夫曼树
举报原因:
原因补充:

(最多只允许输入30个字)