【网络流24题】试题库问题

原创 2017年01月03日 07:02:36

(网络流24题大多需要spj,所以需要一个有spj的oj,本系列代码均在www.oj.swust.edu.cn测试通过)
这道题的模型很显然,源点向每个试卷连接一条容量为1的边,每个试卷向对应的类型连接一条容量为一的边,每个类型向汇点连接一条容量为需要数量的边,跑一边最大流即可。

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<iomanip>
#include<ctime>
#include<cmath>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
#define INF 100000000
struct bian
{
    int l,r,f,lei;
}a[1000000];
int d[100000];
int s=0,t=99999;
int fir[1000000];
int nex[1000000];
bool bfs()
{
    static int dui[1000000];
    memset(d,-1,sizeof(d));
    int top=1,my_final=2;
    dui[top]=s;
    d[s]=1;
    while(top<my_final)
    {
        int u=dui[top++];
        for(int o=fir[u];o;o=nex[o])
        {
            if(a[o].f && d[a[o].r]==-1)
            {
                dui[my_final++]=a[o].r;
                d[a[o].r]=d[u]+1;
                if(a[o].r==t) return true;
            }
        }
    }
    return false;
}
int dinic(int u,int flow)
{
    if(u==t) return flow;
    int left=flow;
    for(int o=fir[u];o&&left;o=nex[o])
    {
        if(a[o].f && d[a[o].r]==d[u]+1)
        {
            int temp=dinic(a[o].r,min(a[o].f,left));
            if(!temp) d[a[o].r]=-1;
            left-=temp;
            a[o].f-=temp;
            a[o^1].f+=temp;
        }
    }
    return flow-left;
}
int tot=1;
void add_edge(int l,int r,int f,int lei=0)
{
    a[++tot].l=l;
    a[tot].r=r;
    a[tot].f=f;
    a[tot].lei=lei;
    nex[tot]=fir[l];
    fir[l]=tot;
}
int trueans[25][2000];
int top[25];
int main()
{
    int k,n;
    scanf("%d%d",&k,&n);
    int zong=0;
    for(int i=1;i<=k;i++)
    {
        int x;
        scanf("%d",&x);
        zong+=x;
        add_edge(i,t,x);
        add_edge(t,i,0);
    }
    for(int i=1;i<=n;i++)
    {
        add_edge(s,i+k,1);
        add_edge(i+k,s,0);
        int m;
        scanf("%d",&m);
        for(int j=1;j<=m;j++)
        {
            int x;
            scanf("%d",&x);
            add_edge(i+k,x,1,1);
            add_edge(x,i+k,0);
        }
    }
    int ans=0;
    while(bfs()) ans+=dinic(s,INF);
    if(ans!=zong)
    {
        cout<<"No Solution!";
        return 0;
    }
    else
    {
        for(int i=2;i<=tot;i++)
            if(a[i].f==0 && a[i].lei)
                trueans[a[i].r][++top[a[i].r]]=a[i].l-k;
        for(int i=1;i<=k;i++)
        {
            cout<<i<<": ";
            for(int j=1;j<=top[i];j++) printf("%d ",trueans[i][j]);
            printf("\n");
        }
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

网络流24题之试题库问题

题意搞不清楚真是GG。这题面。。。。cry 注意题面上n和k弄反了,而且一个题计数时只能算某一种类型,看下样例就知道了。 网络流建图: 源点向题目类型连容量为应有题目数量的边,对于题目j属于i类型...

试题库问题[网络流24题之7]

问题描述:假设一个试题库中有 n n 道试题。每道试题都标明了所属类别。同一道题可能有多个类别属性。现要从题库中抽取 m m 道题组成试卷。并要求试卷包含指定类型的试题。试设计一个满足要求的组卷算...

网络流24题:试题库问题

传送门 这个题好像比较水。 每个种类向汇点连容量为所需求的数量的边 然后每个试题向可以选的种类连容量为1的边 再从源点向每个试题连容量为1的边,然后dinic 过程中记录一下转移的目标节点,...

线性规划与网络流24题の7 试题库问题(二分图匹配)

有n道题和k种类型,每道题可以属于多种

网络流24题—— 试题库问题

Dinic实现二分图匹配的变式
  • wyh0410
  • wyh0410
  • 2016年09月06日 19:52
  • 426

kyeremal-网络流24题T7-试题库问题

题意: 假设一个试题库中有 n 道试题。每道试题都标明了所属类别。同一道题可能有多个类别属性。 现要从题库中抽取 m 道题组成试卷。并要求试卷包含指定类型的试题。试设计一个满足要求的组卷算法。 ...

Cogs 732. [网络流24题] 试题库(二分图)

[网络流24题] 试题库 ★★ 输入文件:testlib.in 输出文件:testlib.out 评测插件 时间限制:1 s 内存限制:128 MB «问题描述: ...

【loj】#6006. 「网络流 24 题」试题库(二分图匹配)

假设一个试题库中有 n n n 道试题。每道试题都标明了所属类别。同一道题可能有多个类别属性。现要从题库中抽取 m m m 道题组成试卷。并要求试卷包含指定类型的试题。试设计一个满足要求的组卷算法。...

LOJ6006「网络流 24 题 - 7」 试题库 坠大流

大家都很强, 可与之共勉 。题意:   有kk种试题,nn道试题,每种道题属于一些种类。你要组一套试卷,其中每一种试题的数量只能是kik_i,求方案。题解:   最大流判是否满流,满流就有解。 ...

loj6006「网络流 24 题」试题库(最大流)

判断是否满流即可。
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【网络流24题】试题库问题
举报原因:
原因补充:

(最多只允许输入30个字)