关闭

hdu5755 2016 Multi-University Training Contest 3 Gambler Bo 解题报告

标签: 多校高斯消元
249人阅读 评论(0) 收藏 举报
分类:

这题打的我好伤心.............


题意:给一个N*M的矩阵,矩阵里的元素值为0,1,2中的一个,每次可以选择一个元素(x,y),他的值+2,上下左右四个值+1,矩阵里的元素如果超过2,他们需要 mod 3,问你怎么操作才能使矩阵里的所有元素都为0,输入数据保证有解。



题解的话,这类题一般是用高斯消元做的,设n*m个元素每个的操作次数为x[i],然后根据题意可以列出n*m个同余方程,然后高斯消元就可以了,时间复杂度是O( N^3*M^3 ),好像很多人有O( M^3 )的做法,但是我想不到。至于为什么O( N^3*M^3 ),因为每个位置只会受最多5个位置的x影响,所以方程里很多系数都是0,实际的时间短很多


注意高斯消元解同余方程的时候最好在过程里全部系数都弄成正的,不然有些地方比如最后求值的时候容易错


code:

#include<set>
#include<map>
#include<deque>
#include<queue>
#include<stack>
#include<ctime>
#include<cmath>
#include<vector>
#include<string>
#include<bitset>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<climits>
#include<complex>
#include<iostream>
#include<algorithm>
using namespace std;

const int Mod = 3;
const int maxn = 1010;
struct E
{
	int a[maxn],s;
}f[maxn],zero,tmp;
int x[maxn];
int n,m,num;
int N[3] = {0,1,2};


void G( int now )
{
	if( now == num )
	{
		x[now] = ( f[now].s*N[ f[now].a[now] ] )%Mod;
		return ;
	}
	if( f[now].a[now] == 0 )
	{
		for( int i=now+1;i<=num;i++ )
			if( f[i].a[now] != 0 )
			{
				tmp = f[now];
				f[now] = f[i];
				f[i] = tmp;
				break;
			}
	}
	for( int i=now+1;i<=num;i++ )
	{
		if( f[i].a[now] != 0 )
		{
			int t1 = f[now].a[now], t2 = f[i].a[now];
			for( int j=1;j<=num;j++ )
			{
				f[i].a[j] *= t1;
				f[i].a[j] -= f[now].a[j]*t2;
				f[i].a[j] %= Mod;
				if( f[i].a[j] < 0 ) f[i].a[j] += Mod;
			}
			f[i].s = f[i].s*t1 - f[now].s*t2;
			f[i].s %= Mod;
			if( f[i].s < 0 ) f[i].s += Mod;
		}
	}
}
void get_x( int now )
{
	for( int i=now+1;i<=num;i++ ) f[now].s -= f[now].a[i]*x[i];
	f[now].s %= Mod;
	x[now] = ( f[now].s*N[ f[now].a[now] ] )%Mod;
}

int main()
{
	memset( zero.a,0,sizeof zero.a ); zero.s = 0;
	
	int t,ct;
	scanf("%d",&t);
	while( t-- )
	{
		memset( x,0,sizeof x );
		scanf("%d%d",&n,&m);
		num = n*m;
		for( int i=1;i<=n;i++ )
		{
			for( int j=1;j<=m;j++ )
			{
				scanf("%d",&ct);
				int id = (i-1)*m+j; f[id] = zero;
				f[id].s = (Mod-ct)%Mod;
				f[id].a[id] = 2;
				if( i>1 ) f[id].a[id-m] = 1;
				if( i<n ) f[id].a[id+m] = 1;
				if( j>1 ) f[id].a[id-1] = 1;
				if( j<m ) f[id].a[id+1] = 1;
			}
		}
		
		for( int i=1;i<=num;i++ ) G( i );
		for( int i=num-1;i>=1;i-- ) get_x( i );
		
		int ret = 0;
		for( int i=1;i<=num;i++ ) 
		{
			if( x[i] < 0 ) x[i] += 3;
			ret += x[i];
		}
		
		printf("%d\n",ret);
		for( int i=1;i<=n;i++ )
		{
			for( int j=1;j<=m;j++ )
			{
				int id = (i-1)*m+j;
				while( x[id] ) 
				{
					printf("%d %d\n",i,j);
					x[id]--;
				}
			}
		}
	}
	
	return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:80369次
    • 积分:3351
    • 等级:
    • 排名:第10506名
    • 原创:262篇
    • 转载:0篇
    • 译文:0篇
    • 评论:14条