关闭

hdu1083 Courses--最大匹配 & HK算法

标签: 二分图最大匹配HDUC++HK
226人阅读 评论(0) 收藏 举报
分类:

原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1083


题意:p个课程,n个学生,每门课程都有若干个学生,问是否可以让每门课程都有课代表,可以输出YES。

直接用HK算法就可以,当然这题有点水,用匈牙利也可以。

#define _CRT_SECURE_NO_DEPRECATE 

#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<queue>
#define INF 99999999;
using namespace std;

int t;
int dis;
int p, n;
int a[105][305];
int cx[305];
int cy[305];
int dx[305];
int dy[305];
bool vis[305];

bool searchPath()
{
	queue<int> Q;
	memset(dx, -1, sizeof(dx));
	memset(dy, -1, sizeof(dy));
	dis = INF;
	for (int i = 1; i <= p; i++)
	{
		if (cx[i] == -1)
		{
			Q.push(i);
			dx[i] = 0;
		}
	}

	while (!Q.empty())
	{
		int u = Q.front();
		Q.pop();
		if (dx[u] > dis)
			break;
		for (int v = 1; v <= n; v++)
		{
			if (a[u][v] && dy[v] == -1)
			{
				dy[v] = dx[u] + 1;
				if (cy[v] == -1)
					dis = dy[v];
				else
				{
					dx[cy[v]] = dy[v] + 1;
					Q.push(cy[v]);
				}
			}
		}
	}
	return dis != INF;
}

int findPath(int u)
{
	for (int v = 1; v <= n; v++)
	{
		if (!vis[v] && a[u][v] && dy[v] == dx[u] + 1)
		{
			vis[v] = 1;
			if (cy[v] != -1 && dy[v] == dis)
				continue;
			if (cy[v] == -1 || findPath(cy[v]))
			{
				cy[v] = u;
				cx[u] = v;
				return 1;
			}
		}
	}
	return 0;
}

int maxMatch()
{
	int ans = 0;
	memset(cx, -1, sizeof(cx));
	memset(cy, -1, sizeof(cy));
	while (searchPath())
	{
		memset(vis, 0, sizeof(vis));
		for (int i = 1; i <= p; i++)
		{
			if (cx[i] == -1)
				ans += findPath(i);
		}
	}
	return ans;
}

int main()
{
	scanf("%d", &t);
	while (t--)
	{
		scanf("%d%d", &p, &n);
		memset(a, 0, sizeof(a));
		
		for (int i = 1; i <= p; i++)
		{
			int num, x;
			scanf("%d", &num);
			for (int j = 1; j <= num; j++)
			{
				scanf("%d", &x);
				a[i][x] = 1;
			}
		}
		printf("%s\n", maxMatch() == p ? "YES" : "NO");
	}

	return 0;
}



2
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:383256次
    • 积分:7110
    • 等级:
    • 排名:第3553名
    • 原创:395篇
    • 转载:52篇
    • 译文:0篇
    • 评论:38条
    生活感悟
    人到猪,再从猪到人,只需两步。对于前者,我已经完成,而后者,我还需要时间。
    关于博主
    最新评论