关闭

阅读A Discriminative Feature Learning Approach for Deep Face Recognition

What: 对于分类任务来说,最后预测的是一个联合概率。 打个比方:[1,0,0,1],[0,1,1,0]我可以预测为同一类。只要用[1,0,1,0]的filter。卷积和都是1,没毛病。 但是我们发现一个问题。 这两个虽然是同一类,但是特征完全不同。也就是说,如果我们拿CNN中间的特征出来,也可能发现这种乌龙事件。 虽然分类效果很好,但是中间层的特征并不是按我们预想的那样分布的。 为了解决这个问题,常见的方案是 contrastive loss 和 triplet loss。作者则提出了一个center...
阅读(1046) 评论(3)

如何加强神经网络训练

1. 扩大数据集 调研CUHK01/CUHK03 2.做数据增强 旋转,翻转,平移 3.triplet loss 4.结构问题 5.multi-task...
阅读(522) 评论(0)
    个人资料
    • 访问:59192次
    • 积分:993
    • 等级:
    • 排名:千里之外
    • 原创:32篇
    • 转载:0篇
    • 译文:3篇
    • 评论:40条
    文章分类
    关于我