阅读小结:A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

原创 2017年06月16日 20:35:53

arXiv: https://arxiv.org/pdf/1704.03414.pdf


What:

1. 目标是去增强  检测器对于遮挡和形变 的泛化能力 

2. 但是数据集中 遮挡和形变 的图像一般较少  

3. 所以作者提出了 adversary的方法去增加 训练难度

4. 整个网络是 基于 Fast-RCNN 而不是 Faster-RCNN



How:

1. 先pretrain Fast-RCNN网络

2. 通过sliding window (如果feature map的大小是6*6,这个window大小是2*2)找到遮住哪部分对网络影响最大,用这个使loss最大的mask来pretrain adverse的部分网络(ASDN)

3. pretrain ASDN使用的loss 是 mask上每个像素做二分类cross entropy loss(其实这里也可以直接regression吧?)

4. pretrain完了以后,实际在训练的时候,ASDN输出的不是二值,而是一个0~1之间的概率。所以可以设置一个阈值,来确定最后到底要dropout哪些。作者实际上是先找到top50% predict出来要dropout的点,然后在这50%的位置里再随机选一些点来drop。实际就是drop了 1/3的位置。

5. 现在都pretrain完了~可以连起来训练了 

6. 另外,4中使用了随机采样,是不可导的。所以作者说可以用rl的方法来处理这部分的回传bp,但没细说。

7. 类似的我们除了可以用dropout 来模拟遮挡,也可以用 stn来模拟 物体的旋转 形变。

8. STN这部分限制了旋转角度为 -10度到10度

9. A-dropout 和 A-stn可以串行

版权声明:本文为博主原创文章,未经博主允许不得转载。

A-Fast-RCNN 论文笔记

论文地址:A-Fast-RCNN Caffe代码:adversarial-frcnn前言 近期为了学术汇报,阅读了这篇CVPR 2017论文,该论文将对抗学习的思路应用在目标检测中,通过对抗网络生成...

目标检测“A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection”

如何训练一个目标检测器,对遮挡和形变鲁棒,目前的主要方法是增加不同情况的图像数据,但这些数据有时又特别少。作者提出使用对抗生成有遮挡或形变的样本,这些样本对检测器来说比较困难,使用这些困难的正样本训练...

对抗学习用于目标检测--A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection CVPR 2017 Caffe code : ht...

A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

这篇论文作者在Fast RCNN的基础上,运用对抗生成网络GAN的思想,加入了两个对抗网络来加强Fast RCNN算法的鲁棒性,下面的内容是这篇文章的翻译,我已经修改过大部分的内容使得读起来比较通顺,...

A-Fast-RCNN代码运行以及问题解决方法

最近读了A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection这篇论文,读了之后根据作者提供的代码,准备跑一跑...

对抗网络之目标检测应用:A-Fast-RCNN

对抗网络之目标检测应用:A-Fast-RCNN       论文:A-Fast-RCNN: Hard Positive Generation via Adversary for Object Dete...

A-Fast-RCNN 论文笔记

本文主要是对:http://blog.csdn.net/jesse_mx/article/details/72955981的搬运,感谢博主! 前言 近期为了学术汇报,阅读了这篇CVPR 2017论文...

论文笔记--FaceNet & Online Hard Example Mining

昨天读了两篇论文,一篇是今年cvpr的一篇oral,R-CNN的作者,论文的重点不是提高检测速度,而是在进行更有效的训练—-如何挖掘有效的样本;另一篇是去年google提出的利用三元组进行人脸识别算法...

一张图理清CNN脉络 RCNN SPP FASTRCNN FASTERRCNN 到 MSCNN

RCNN :1: object proposal machanism

[论文笔记]A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

[论文笔记]A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detectionpaper一、论文思想训练一个目标检测器,对...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:阅读小结:A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection
举报原因:
原因补充:

(最多只允许输入30个字)