关闭

阅读小结:Unsupervised Representation with Deep Convolutional Generative Adversarial Networks

What CNN应用于无监督学习。将这种CNN称为DCGANs 1.提出和评估了DCGANs 有一些结构上的限制,让他可以stable的去训练。 2.利用图像分类任务训练的discriminator,证明了他们有无监督学习的潜力。(这是迁移学习?) 证明了他们的adversarial pair学习到了一个  hierarchy of representations  从物体的部分到整个场景...
阅读(790) 评论(2)

阅读小结:Generative Adversarial Nets

这是Ian Goodfellow大神的2014年的paper,最近很火,一直没看,留的坑。 中文应该叫做对抗网络 What: 同时驯良两个模型:一个生成模型G(获得数据分布),一个区分模型D(预测输入是真实的,还是G中产生的) G的训练目标就是最大化D犯错误的可能,这样G这个生成模型就越厉害。 这个框架很像两个人在玩游戏。 整个系统里只用了bp,没有马尔可夫链或者其他推理的神经...
阅读(5307) 评论(0)

阅读小结: Artist style transfer for videos

这篇paper存了好久,一直没有看。今天补了 What: 看了这个youtube视频就可以感受到了。视频上做Artist Style十分酷炫! https://www.youtube.com/watch?v=Khuj4ASldmU 看前的问题: 我自己写过单帧的Artist Style (https://github.com/layumi/2016_Artist_St...
阅读(895) 评论(0)

阅读小结:Correlational Neural Networks

What: auto encoder的升级版   显式的 最大化当投影到同一空间时views之间的联系 (这里的view指的是图像,声音这种不同的输入源) 比如视频分类任务中就想把声音结合进去。 Formally Define这个任务是: 我们有一组数据Z,每个Z是由特征X,和特征Y concat起来的  (比如X来自视频的图像,Y来自视频的音频) 1.首先 h1(X) 和 h...
阅读(262) 评论(0)

阅读小结:CNN Image Retrieval Learns from BoW:Unsupervised Fine-Tuning with Hard Example:CNN Image Retrie

What: 图像检索的一篇文章, 由于数据集的问题,ft以后在Holiday上 VGGNET    82.5   在Oxford 5k上结果(cropi) VGGNET 79.1 How:  提出了了一个无监督收集的数据集 主要讲了收集的策略。...
阅读(1039) 评论(0)

matlab中在图像上划线 画圈的方法

其实用plot都可以搞定。  plot(imp(:,1),imp(:,2),'ro'); %最后的‘ro’,r是代表红色,o是代表画圈。画圈的话可以提供多个点的坐标,我这里用的就是向量的形式。   plot(imp(1:2,1),imp(1:2,2)); %划线 提供两个xy坐标,然后plot默认就会划线  plot(imp(3:5,1),imp(3:5,2));  plot(imp(6...
阅读(5585) 评论(0)

如何加强神经网络训练

1. 扩大数据集 调研CUHK01/CUHK03 2.做数据增强 旋转,翻转,平移 3.triplet loss 4.结构问题 5.multi-task...
阅读(508) 评论(0)

Spatial Transformer Layer 实验结果 及 分析

序言: ST Layer在distorted minist数据集上表现出了很好的结果,但毕竟distorted minist是一个简单的数据集。(手写单个数字分类,所以共10类) 所以在本篇文章中,先会解释一部分,STLayer的原理,然后解释一部份minist上面的操作,最后解释一下我在market1501上的实验以及结果分析 解释: ST Layer是一个 由 6个参数 和原图...
阅读(747) 评论(1)

cuda 安装方法

实验室的服务器又挂了。。。。真的日了狗了。。 写下来,以防自己以后还要装。 http://docs.nvidia.com/cuda/cuda-getting-started-guide-for-linux/index.html#axzz4ESw6hG2k...
阅读(446) 评论(0)

阅读小结Deep Metric Learning via Lifted Structured Feature Embedding

What: 这是一篇讲图像retrieval的工作。也就是通过一张图片去搜索相关图片。比较直观的问题在于图像的传统问题 -类内差异 (比如同一物体在不同pose下的照片) -类间相似(比如不同物体在同一pose下的照片) 然后比较diao的地方是,zero-shot learning没有学习过,直接test(和以前我们常用的vgg模型提取特征的感觉一样) Motivation:...
阅读(2266) 评论(1)

阅读小结An Improved Deep Learning Architecture for Person Re-Identification

Author: Ejaz Ahmed,Michael Jones and Tim K. Marks  http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ahmed_An_Improved_Deep_2015_CVPR_paper.pdf Motivation: 利用神经网络同时提取特征和相似矩阵学习来...
阅读(1240) 评论(8)

阅读小结Improving Person Re-identification via Pose-aware Multi-shot Matching

Authors:Yeong-Jun Cho and Kuk-Jin Yoon  What: Person Reid 识别多个摄像头下的行人是否为同一人 Motion: 由于camera viewpoint 和 person pose带来的外形巨大改变,故提出了 Pose-aware Multi-shot Matching (PaMM)  分析这两种问题 (由于多个摄像头的设置...
阅读(1251) 评论(0)

CMS-RCNN阅读小结

阅读前疑问: 1.FasterRCNN的RPN 本来就是multi-scale的,印象中有27种,这篇文章针对人脸检测有什么改进么? 2.contextual是怎么结合附近信息? 驱动: 1.小的人脸使用rcnn难以检测 原始RCNN 一方面reception field大,所以小的脸占的比例就小,混入的背景信息就多了;另一方面,小的脸几次stride2以后到conv5太小了。 ...
阅读(1285) 评论(0)

Convolutional Pose Machines 阅读小结

Title: Convolutional Pose Machines Authors: Shih-En Wei, Varun Ramakrishna, Takeo Kanade, Yaser Sheikh Link: https://arxiv.org/abs/1602.00134 Github: https://github.com/CMU-Perceptual-Computi...
阅读(2956) 评论(2)

一个新的开始

我即将开始我的博士生涯。 之所以开了这个博客,是希望能记录下自己的点滴以及对看过论文的小结。 我知道这肯定会很苦,不像本科的时候,懒的话很多事情可以糊弄过去,不负责任。 要push 自己努力去变成一个靠谱的人。 最近看的书上有这么一句话: God,  grant me the serenity to accept the things I cannot change, courage...
阅读(668) 评论(0)
35条 共2页首页 上一页 1 2
    个人资料
    • 访问:57298次
    • 积分:973
    • 等级:
    • 排名:千里之外
    • 原创:32篇
    • 转载:0篇
    • 译文:3篇
    • 评论:40条
    文章分类
    关于我