关闭

阅读小结:A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

arXiv: https://arxiv.org/pdf/1704.03414.pdf What: 1. 目标是去增强  检测器对于遮挡和形变 的泛化能力  2. 但是数据集中一般   遮挡和形变 的图像较少   3. 所以作者提出了 adversary的方法去增加 训练难度 4. 整个网络是 基于 Fast-RCNN 而不是 Faster-RCNN How:...
阅读(486) 评论(0)

阅读小结:Unsupervised Learning of Visual Representations using Videos

paper link: http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Wang_Unsupervised_Learning_of_ICCV_2015_paper.html 发表于2015ICCVWhat: 1. 使用视频中的物体去训练网络。比如:可以作为一个pretrain的结果应用到其他分类任务上。 2. 没有使...
阅读(212) 评论(0)

Word2Vec教程(2)- Negative Sampling

原帖地址:http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/在word2vec第二部分教程中(这里是第一部分part1) 我将会讨论一些在原有skip-gram 模型基础上 额外的小trick,使模型训练可行。当你读到skip-gram model 的时候,你可能会觉得它是一个很大的网络。(译者...
阅读(1634) 评论(0)

Word2Vec教程 - Skip-Gram模型

翻译原始链接: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/这个教程包含 训练word2vec的 skip-gram 模型。通过这个教程,我希望跳过常规Word2Vec 的介绍和抽象理解, 而是去讨论一些细节。特别是skip gram的网络结构。模型skipgram model 常常让人惊讶于它的简单...
阅读(2471) 评论(0)
    个人资料
    • 访问:59192次
    • 积分:993
    • 等级:
    • 排名:千里之外
    • 原创:32篇
    • 转载:0篇
    • 译文:3篇
    • 评论:40条
    文章分类
    关于我