caffe+cuda编程

原创 2017年01月04日 00:23:10

核函数

核函数的特点

  1. cuda代码文件的后缀为”.cu”,由单独的编译器进行编译
  2. 核函数是cu文件中的一部分代码,是运行在显存中的程序代码,是实现并行计算的载体
  3. 核函数一般放在cu文件中的前面,函数定义之前需要添加__global__关键字,函数体中包含CUDA_KERNEL_LOOP循环体
  4. CUDA_KERNEL_LOOP循环体有两个参数,第一个是迭代器,第二个是总迭代数
  5. CUDA_KERNEL_LOOP循环体中的代码是并行执行的,是互不关联的可独立执行的程序

示例代码

template <typename Dtype>
__global__ void kernel_statistic(const int num, const Dtype* bottom_data, Dtype* temp, 
  const int label_num, const int nsim, Dtype* counter) {
  CUDA_KERNEL_LOOP(index, num) {
    Dtype count_iter(0.0);
    for (int j = index + 1; j < num; ++j) {
      Dtype result_dot(0.0);
      for (int k = 0; k < label_num; ++k) {
        result_dot += bottom_data[index * label_num + k] * bottom_data[j * label_num + k];
      }
      temp[index * num * 2 + j * 2] = result_dot;
      if (result_dot >= Dtype(1.0))
        count_iter++;
    }
    counter[index] = count_iter;
  }
}

注意事项

  • 核函数中不能出现__host__类型的函数,例如caffe中定义的caffe_gpu开头的函数、C++ 标准库中的函数
  • 核函数中的数学计算由CUDA Math API完成
  • 核函数一般不需要返回值
  • 核函数的参数是所有CUDA_KERNEL_LOOP循环体公用的,对数据的修改应该是互不干扰的,示例代码中counter数组存储了各循环体代码计数的结果,传出后再进行累加运算得到总的统计结果。

传送门

Forward_gpu和Backward_gpu

注意事项

  1. 这两个函数需要在层的hpp文件中声明
  2. cu文件编译生成后,cpp文件中的Forward_cpu函数和Backward_cpu函数将不会被调用
  3. 初始化层时,cpp文件中的LayerSetUp函数和Reshape函数也会被执行
  4. 对数组求和,可以用caffe_gpu_asum函数
  5. 数据在GPU和CPU之间的拷贝速度特别慢,在cu文件中慎用cpu_data函数和mutabel_cpu_data函数
  6. GPU擅长处理大规模矩阵运算,核函数应简单简洁

Caffe 初学拾遗(五) CUDA 并行化示例

Original Source: http://blog.csdn.net/augusdi/article/details/12833235 一些CUDA编程的简单示例程序,笔者在此进行了整理...
  • baidu_24281959
  • baidu_24281959
  • 2016年09月21日 15:40
  • 2292

Caffe 初学拾遗(四) CUDA 框架说明

Original Source: http://bbs.csdn.net/topics/390798229 http://blog.csdn.net/augusdi/article/details/...
  • baidu_24281959
  • baidu_24281959
  • 2016年09月21日 10:33
  • 2158

caffe cuda 程序分析

caffe 用cuda 来进行加速, 看完caffe CPU的程序,再去看 CUDA程序, 变得很容易了 在layer文件中, cuda 程序和CPU程序类似,只是调用math_functi...
  • u014114990
  • u014114990
  • 2015年08月25日 10:31
  • 3921

(Caffe)编程小技巧

Cuda中要处理单位数据N大于可用的线程数量N’时 以向量乘函数为例,mul_kernel(n,a,b,y)对长为n的a,b求内积,结果放入ytemplate __global__ void mul...
  • mounty_fsc
  • mounty_fsc
  • 2016年05月02日 13:36
  • 2123

Caffe傻瓜系列(8):命令行解析

caffe的运行提供三种接口:c++接口(命令行)、python接口和matlab接口。本文先对命令行进行解析,后续会依次介绍其它两个接口。 caffe的c++主程序(caffe.cpp)放在根目录下...
  • langb2014
  • langb2014
  • 2016年01月04日 19:45
  • 7912

caffe 学c++ 编程 技巧

1、 使用模板,泛型编程 template Net::Net(const NetParameter& param) { Init(param); } 代码中到处可见 使用模板, 主要是 输入...
  • u014114990
  • u014114990
  • 2015年08月24日 14:03
  • 1057

Ubuntu14.04 +caffe+cuda 7.0

Ubuntu14.04 + caffe + cuda 7.0参考自:https://gist.github.com/bearpaw/c38ef18ec45ba6548ec0若需要cuDNN加速的童鞋,...
  • game115
  • game115
  • 2015年03月11日 15:31
  • 7617

Caffe源码(一):math_functions 分析

目录目录 主要函数 caffe_cpu_gemm 函数 caffe_cpu_gemv 函数 caffe_axpy 函数 caffe_set 函数 caffe_add_scalar 函数 caffe_c...
  • seven_first
  • seven_first
  • 2015年08月09日 19:15
  • 48886

(Caffe,LeNet)前向计算(五)

本文地址: 本部分剖析Caffe中Net::Forward()函数,即前向计算过程。从LeNet网络角度出发,且调式网络为测试网络(区别为训练网络),具体网络层信息见(Caffe,LeNet)初始化测...
  • mounty_fsc
  • mounty_fsc
  • 2016年05月06日 18:33
  • 9402

Caffe中 math_functions 分析

本篇博客转载自 Caffe源码(一):math_functions 分析 math_function 定义了caffe 中用到的一些矩阵操作和数值计算的一些函数,这里以float类型为例做简单的分析...
  • xg123321123
  • xg123321123
  • 2016年11月24日 20:36
  • 1061
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:caffe+cuda编程
举报原因:
原因补充:

(最多只允许输入30个字)