01背包(转)

转载 2012年03月23日 17:25:18

例题1、 基本的0-1背包问题(HDU 2602)

        这是最基本的01背包模型。定义f[i][j]:在前i个bone中用容量为j的包选择bone所能得到的最大价值。设:第i个bone的volume为c[i],相应的value为w[i]。分析:将“前i个bone装进容量为j的包中所得到的最大价值”这个子问题的求解,考虑第i个bone,则会有两种策略:<1>、不选择第i个bone,此时子问题的解为将“前i-1个bone装进容量为j的包中所得到的最大价值”即:f[i][j]=f[i-1][j];<2>、选择第i个bone,则子问题的解为将“第前i-1个bone装入背包容量为j-c[i]的包中所得到的最大价值”与第i个bone的价值之和, 即:f[i][j]=f[i-1][j-c[i]]+w[i]。

        状态转移方程为:f[i][j]=max{f[i-1][j],f[i-1][j-c[i]]+w[i]};

[c-sharp] view plaincopy
  1. #include<iostream>  
  2. #include<cstdio>  
  3. #include<stdlib.h>  
  4. #include<cmath>  
  5. #define Max 1001  
  6. using namespace std;  
  7. int c[Max],w[Max],bag,f[Max];  
  8. void ZeroOnePack(int cost,int weight)  
  9. {  
  10.      for(int i=bag;i>=cost;i--) //细节:for循环的起始不能弄颠倒了!  
  11.         if(f[i]<f[i-cost]+weight)  
  12.            f[i]=f[i-cost]+weight;  
  13. }  
  14. int main()  
  15. {  
  16.     int t;  
  17.     scanf("%d",&t);  
  18.     while(t--)  
  19.     {  
  20.          int n;  
  21.          scanf("%d%d",&n,&bag);  
  22.          for(int i=1;i<=n;i++) scanf("%d",&w[i]);  
  23.          for(int i=1;i<=n;i++) scanf("%d",&c[i]);//读入数据  
  24.          memset(f,0,(bag+1)*sizeof(int)); // 初始化  
  25.          for(int i=1;i<=n;i++)  
  26.            ZeroOnePack(c[i],w[i]); //01背包  
  27.          printf("%d/n",f[bag]);        
  28.     }  
  29.     return 0;  
  30. }  

例题2、 简单01背包的变形(HDU 1203)
        在例1分析了01背包问题基本模型的基础上,很容易能够看出来本题也一道01背包的题目。值得注意的是这个背包问题的价值是概率。定义:f[i][j]为在前i个学校中花费j美元没有被录取的最小概率。设:其中报考第i个学校需要花费c[i]美元,能够被录用的概率为w[i]。在求解f[i][j]的时候,同样考虑第i个学校,有两种策略:<1>、不选择,则:f[i][j]=f[i-1][j],<2>、选择,则:f[i][j]=f[i-1][j-c[i]]*(1-w[i])。

        状态转移方程为:f[i][j]=min{f[i-][j],f[i-1][j-c[i]]*(1-w[i])}; 

[c-sharp] view plaincopy
  1. #include<iostream>  
  2. #include<cstdio>  
  3. # define Max 1001  
  4. using namespace std;  
  5. int c[Max],bag;  
  6. double w[Max],f[10001];  
  7. void ZeroOnePack(int cost,double weight)  
  8. {  
  9.     for(int i=bag;i>=cost;i--)  
  10.        if(f[i]>f[i-cost]*weight)  
  11.          f[i]=f[i-cost]*weight;  
  12. }  
  13. int main()  
  14. {  
  15.     int n;  
  16.     while(scanf("%d%d",&bag,&n),bag||n)  
  17.     {  
  18.         for(int i=1;i<=n;i++)  
  19.            scanf("%d%lf",&c[i],&w[i]);  
  20.         for(int i=0;i<=bag;i++)  
  21.           f[i]=1.0;  
  22.         for(int i=1;i<=n;i++)  
  23.           ZeroOnePack(c[i],1.0-w[i]);  
  24.         printf("%.1lf%%/n",(1-f[bag])*100.0);  
  25.     }  
  26.     return 0;  
  27. }  

例题3、 复杂设问的01背包(HDU 2955)
        这是一道在设问方式上显得有点复杂的01背包问题,这个背包问题中得到的价值是银行中的money,相应的花费是概率,常规的构造状态转移方程是令f[i][j]表示前i件物品中花费为j时所能得到的最大价值。然而,这道题中的花费为浮点数!该怎么办呢???
        起初做这道题目的时候很是纠结!想了想觉得肯定是背包问题,那么可以变通一下:令f[i][j]表示在前i个银行中偷得的money为j时能够逃脱的最大概率,这样以来便可以写出状态转移方程:f[i][j]=max{f[i-1][j],f[i-1][j-c[i]]*(1-p[i])},其中我们设第i个银行中money为c[i] millon,被caught的概率为p[i]。
       分析易得:cnt=max(i,f[i]>=1-P),这样问题便间接地得到了解决。

 

[c-sharp] view plaincopy
  1. #include<iostream>  
  2. #include<cstdio>  
  3. #define Max 101  
  4. using namespace std;  
  5. int c[Max],bag;  
  6. double f[10001],p[Max],P;  
  7. void ZeroOnePack(int cost,double weight){  
  8.      for(int i=bag;i>=cost;i--)  
  9.         if(f[i]<f[i-cost]*weight)  
  10.             f[i]=f[i-cost]*weight;  
  11. }  
  12. int main(){  
  13.     int t;  
  14.     scanf("%d",&t);  
  15.     while(t--){  
  16.         int n;  
  17.         scanf("%lf%d",&P,&n);  
  18.         bag=0;  
  19.         for(int i=0;i<n;i++){  
  20.           scanf("%d%lf",&c[i],&p[i]);  
  21.           bag+=c[i];  
  22.         }  
  23.         for(int i=1;i<=bag;i++)  
  24.            f[i]=0.0;  
  25.          f[0]=1.0;  
  26.          for(int i=0;i<n;i++)  
  27.             ZeroOnePack(c[i],1-p[i]);  
  28.          for(int i=bag;i>=0;i--){  
  29.               if(f[i]>=1.0-P){  
  30.                   printf("%d/n",i);break;  
  31.               }  
  32.          }  
  33.     }  
  34.     return 0;  
  35. }  

关于01背包初始化问题小结:

        熟悉了01背包的基本模型之后,不同的01背包问题在状态转移方程上是很容易构造的。难点往往在初始化过程中。对于不同的设问方式,我们要能够巧妙地通过巧妙的初始化来使问题得到简化、解决。例如有的题目要求背包“恰好装满时”的最优解,这时可以巧妙地采用如下的初始化来解决:f[0]=0;f[1..bag]=-INF。而在例3中则采取了另一种方式初始化来满足隐含着的“恰好”要求。当然,还是得具体问题具体分析了。学习动态规划时,仔细分析理解透彻状态转移方程是很重要、很有效的一种方法。难以理解的时候,可以自己动手边思考边模拟一下动态规划打表的过程,相信一定会有所收获的!

动态规划---01背包与记忆化搜索

动态规划是一种高效的算法。在数学和计算机科学中,是一种将复杂问题的分成多个简单的小问题思想 ----  分而治之。因此我们使用动态规划的时候,原问题必须是重叠的子问题。运用动态规划设计的算法比一般朴素...
  • luomingjun12315
  • luomingjun12315
  • 2016年04月09日 15:00
  • 1530

【背包专题】01背包

暑假集训开始了,按照队里的分配,我是弄DP的,嘛,于是我又一次的开始了从01背包开始学习,昨天将杭电的几道01背包重新做了一遍,下面讲讲我自己对于01背包的理解。   首先01背包题目的雏形是 有N件...
  • libin56842
  • libin56842
  • 2013年07月16日 09:53
  • 29359

HDU_01背包系列

HDU 01背包系列持续更新中……
  • jhgkjhg_ugtdk77
  • jhgkjhg_ugtdk77
  • 2016年07月22日 12:22
  • 2491

01背包问题几种算法实现

最简单的就是利用搜索,把每一种情况都考虑。 //深度搜索。复杂度O(2^n) int dfs(int i,int j) { int res;//剩余的空间量。 if(i==n)res=0;//...
  • ydd97
  • ydd97
  • 2015年01月29日 15:50
  • 1200

01背包问题 总结关于为什么01背包优化成1维数组后,内层循环是逆序的?

    前言:本人是c语言初学者,能力有限,如果你比较强了,请忽略本文章。。,如果你能多给些指导,那更好啦.  我写这篇文章是因为我在偶然碰到了01背包的题目,而自己太菜,写不出来,于是在...
  • xiajiawei0206
  • xiajiawei0206
  • 2014年02月25日 21:29
  • 1713

回溯法-01背包问题之一:递归模式

一、回溯法 回溯法是一个既带有系统性又带有跳跃性的搜索算法。它在包含问题的所有解的解空间树中按照深度优先的策略,从根节点出发搜索解空间树。算法搜索至解空间树的任一节点时,总是先判断该节点是否肯定不包...
  • chifuqi
  • chifuqi
  • 2014年05月09日 14:48
  • 2387

遗传算法解01背包问题(Java)

遗传算法解01背包问题,并给出了完整可运行的java代码
  • liyuming0000
  • liyuming0000
  • 2015年09月12日 16:26
  • 2775

最通俗易懂的01背包问题讲解

1、动态规划(DP)  动态规划(Dynamic Programming,DP)与分治区别在于划分的子问题是有重叠的,解过程中对于重叠的部分只要求解一次,记录下结果,其他子问题直接使用即可,减少了重复...
  • FX677588
  • FX677588
  • 2017年04月02日 14:02
  • 1381

01背包状态压缩和记录路径

01背包的状态压缩   当然肯定是看了别人的博客,我再重复一下,大神链接:点击打开链接 1、        在看之前希望你已经弄懂了空间复杂度在O(n*w)的算法,空间的压缩到O(w)的状态,其...
  • Cai_Nia
  • Cai_Nia
  • 2016年12月14日 22:55
  • 929

算法学习笔记(二)——01背包问题之回溯解法

背包问题,相信各位看官肯定都有所耳闻!笔者就在此简单的描述一下背包问题: 给定一背包和n件物品,背包的容量为c,第i件物品的重量为w[i],价值为v[i](1         思路分析:显...
  • renshengkudaun
  • renshengkudaun
  • 2016年04月03日 08:38
  • 3192
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:01背包(转)
举报原因:
原因补充:

(最多只允许输入30个字)