01背包(转)

转载 2012年03月23日 17:25:18

例题1、 基本的0-1背包问题(HDU 2602)

        这是最基本的01背包模型。定义f[i][j]:在前i个bone中用容量为j的包选择bone所能得到的最大价值。设:第i个bone的volume为c[i],相应的value为w[i]。分析:将“前i个bone装进容量为j的包中所得到的最大价值”这个子问题的求解,考虑第i个bone,则会有两种策略:<1>、不选择第i个bone,此时子问题的解为将“前i-1个bone装进容量为j的包中所得到的最大价值”即:f[i][j]=f[i-1][j];<2>、选择第i个bone,则子问题的解为将“第前i-1个bone装入背包容量为j-c[i]的包中所得到的最大价值”与第i个bone的价值之和, 即:f[i][j]=f[i-1][j-c[i]]+w[i]。

        状态转移方程为:f[i][j]=max{f[i-1][j],f[i-1][j-c[i]]+w[i]};

[c-sharp] view plaincopy
  1. #include<iostream>  
  2. #include<cstdio>  
  3. #include<stdlib.h>  
  4. #include<cmath>  
  5. #define Max 1001  
  6. using namespace std;  
  7. int c[Max],w[Max],bag,f[Max];  
  8. void ZeroOnePack(int cost,int weight)  
  9. {  
  10.      for(int i=bag;i>=cost;i--) //细节:for循环的起始不能弄颠倒了!  
  11.         if(f[i]<f[i-cost]+weight)  
  12.            f[i]=f[i-cost]+weight;  
  13. }  
  14. int main()  
  15. {  
  16.     int t;  
  17.     scanf("%d",&t);  
  18.     while(t--)  
  19.     {  
  20.          int n;  
  21.          scanf("%d%d",&n,&bag);  
  22.          for(int i=1;i<=n;i++) scanf("%d",&w[i]);  
  23.          for(int i=1;i<=n;i++) scanf("%d",&c[i]);//读入数据  
  24.          memset(f,0,(bag+1)*sizeof(int)); // 初始化  
  25.          for(int i=1;i<=n;i++)  
  26.            ZeroOnePack(c[i],w[i]); //01背包  
  27.          printf("%d/n",f[bag]);        
  28.     }  
  29.     return 0;  
  30. }  

例题2、 简单01背包的变形(HDU 1203)
        在例1分析了01背包问题基本模型的基础上,很容易能够看出来本题也一道01背包的题目。值得注意的是这个背包问题的价值是概率。定义:f[i][j]为在前i个学校中花费j美元没有被录取的最小概率。设:其中报考第i个学校需要花费c[i]美元,能够被录用的概率为w[i]。在求解f[i][j]的时候,同样考虑第i个学校,有两种策略:<1>、不选择,则:f[i][j]=f[i-1][j],<2>、选择,则:f[i][j]=f[i-1][j-c[i]]*(1-w[i])。

        状态转移方程为:f[i][j]=min{f[i-][j],f[i-1][j-c[i]]*(1-w[i])}; 

[c-sharp] view plaincopy
  1. #include<iostream>  
  2. #include<cstdio>  
  3. # define Max 1001  
  4. using namespace std;  
  5. int c[Max],bag;  
  6. double w[Max],f[10001];  
  7. void ZeroOnePack(int cost,double weight)  
  8. {  
  9.     for(int i=bag;i>=cost;i--)  
  10.        if(f[i]>f[i-cost]*weight)  
  11.          f[i]=f[i-cost]*weight;  
  12. }  
  13. int main()  
  14. {  
  15.     int n;  
  16.     while(scanf("%d%d",&bag,&n),bag||n)  
  17.     {  
  18.         for(int i=1;i<=n;i++)  
  19.            scanf("%d%lf",&c[i],&w[i]);  
  20.         for(int i=0;i<=bag;i++)  
  21.           f[i]=1.0;  
  22.         for(int i=1;i<=n;i++)  
  23.           ZeroOnePack(c[i],1.0-w[i]);  
  24.         printf("%.1lf%%/n",(1-f[bag])*100.0);  
  25.     }  
  26.     return 0;  
  27. }  

例题3、 复杂设问的01背包(HDU 2955)
        这是一道在设问方式上显得有点复杂的01背包问题,这个背包问题中得到的价值是银行中的money,相应的花费是概率,常规的构造状态转移方程是令f[i][j]表示前i件物品中花费为j时所能得到的最大价值。然而,这道题中的花费为浮点数!该怎么办呢???
        起初做这道题目的时候很是纠结!想了想觉得肯定是背包问题,那么可以变通一下:令f[i][j]表示在前i个银行中偷得的money为j时能够逃脱的最大概率,这样以来便可以写出状态转移方程:f[i][j]=max{f[i-1][j],f[i-1][j-c[i]]*(1-p[i])},其中我们设第i个银行中money为c[i] millon,被caught的概率为p[i]。
       分析易得:cnt=max(i,f[i]>=1-P),这样问题便间接地得到了解决。

 

[c-sharp] view plaincopy
  1. #include<iostream>  
  2. #include<cstdio>  
  3. #define Max 101  
  4. using namespace std;  
  5. int c[Max],bag;  
  6. double f[10001],p[Max],P;  
  7. void ZeroOnePack(int cost,double weight){  
  8.      for(int i=bag;i>=cost;i--)  
  9.         if(f[i]<f[i-cost]*weight)  
  10.             f[i]=f[i-cost]*weight;  
  11. }  
  12. int main(){  
  13.     int t;  
  14.     scanf("%d",&t);  
  15.     while(t--){  
  16.         int n;  
  17.         scanf("%lf%d",&P,&n);  
  18.         bag=0;  
  19.         for(int i=0;i<n;i++){  
  20.           scanf("%d%lf",&c[i],&p[i]);  
  21.           bag+=c[i];  
  22.         }  
  23.         for(int i=1;i<=bag;i++)  
  24.            f[i]=0.0;  
  25.          f[0]=1.0;  
  26.          for(int i=0;i<n;i++)  
  27.             ZeroOnePack(c[i],1-p[i]);  
  28.          for(int i=bag;i>=0;i--){  
  29.               if(f[i]>=1.0-P){  
  30.                   printf("%d/n",i);break;  
  31.               }  
  32.          }  
  33.     }  
  34.     return 0;  
  35. }  

关于01背包初始化问题小结:

        熟悉了01背包的基本模型之后,不同的01背包问题在状态转移方程上是很容易构造的。难点往往在初始化过程中。对于不同的设问方式,我们要能够巧妙地通过巧妙的初始化来使问题得到简化、解决。例如有的题目要求背包“恰好装满时”的最优解,这时可以巧妙地采用如下的初始化来解决:f[0]=0;f[1..bag]=-INF。而在例3中则采取了另一种方式初始化来满足隐含着的“恰好”要求。当然,还是得具体问题具体分析了。学习动态规划时,仔细分析理解透彻状态转移方程是很重要、很有效的一种方法。难以理解的时候,可以自己动手边思考边模拟一下动态规划打表的过程,相信一定会有所收获的!

相关文章推荐

九度OJ 1361(反转) 1362(循环移位) 1363(判断) 1364(01背包) 1365(BFS)

1361:翻转单词顺序http://ac.jobdu.com/problem.php?pid=1361题意将一行英文句子按单词反转。思路二维字符串存储,反转外围即可。代码#include #incl...

【转】 01背包问题 动态规划解法

动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 比如01背包问题。 /* 一个旅行者有一个最多能用M公斤的背包,现在有N件物品, 它们的...

【转】经典的01背包问题

经典的01背包问题 对于动态规划,每个刚接触的人都需要一段时间来理解,特别是第一次接触的时候总是想不通为什么这种方法可行,这篇文章就是为了帮助大家理解动态规划,并通过讲解基本的01背包问题来引导读者...
  • ACM_Ted
  • ACM_Ted
  • 2012年08月06日 10:28
  • 620

密码锁 01背包

  • 2017年11月09日 21:38
  • 45KB
  • 下载

【POJ1014】Dividing 多重背包,二进制物品拆分转01背包

多重背包裸题POJ1014二进制优化(算是讲解吧)
  • Vmurder
  • Vmurder
  • 2014年09月22日 09:29
  • 1423

01背包问题

  • 2013年03月25日 21:34
  • 4KB
  • 下载

01背包问题C

  • 2014年05月24日 20:07
  • 2.17MB
  • 下载

POJ 1276 Cash Machine (多重背包转01背包优化)

Cash Machine Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 30096   ...

01背包问题

  • 2012年12月16日 15:00
  • 1KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:01背包(转)
举报原因:
原因补充:

(最多只允许输入30个字)