ACM 数据结构 线段树 HDU 1540 Tunnel Warfare

原创 2016年05月31日 14:31:12
  1. Problem Description
    During the War of Resistance Against Japan, tunnel warfare was carried out extensively in the vast areas of north China Plain. Generally speaking, villages connected by tunnels lay in a line. Except the two at the ends, every village was directly connected with two neighboring ones.

    Frequently the invaders launched attack on some of the villages and destroyed the parts of tunnels in them. The Eighth Route Army commanders requested the latest connection state of the tunnels and villages. If some villages are severely isolated, restoration of connection must be done immediately!
     

    Input
    The first line of the input contains two positive integers n and m (n, m ≤ 50,000) indicating the number of villages and events. Each of the next m lines describes an event.

    There are three different events described in different format shown below:

    D x: The x-th village was destroyed.

    Q x: The Army commands requested the number of villages that x-th village was directly or indirectly connected with including itself.

    R: The village destroyed last was rebuilt.
     

    Output
    Output the answer to each of the Army commanders’ request in order on a separate line.
     

    Sample Input
    7 9 D 3 D 6 D 5 Q 4 Q 5 R Q 4 R Q 4
     

    Sample Output
    1 0 2 4


  2. #include <stdio.h>  
  3. #include <string.h>  
  4. #include <algorithm>  
  5. #include <math.h>  
  6. #include <stdlib.h>  
  7. using namespace std;  
  8.   
  9. const int maxn = 50000+10;  
  10.   
  11. int n,m;  
  12. int s[maxn],top;//s为模拟栈  
  13.   
  14. struct node  
  15. {  
  16.     int l,r;  
  17.     int ls,rs,ms;//ls,左端最大连续区间,rs右端最大连续区间,ms区间内最大连续区间  
  18. } a[maxn<<2];  
  19.   
  20. void init(int l,int r,int i)  
  21. {  
  22.     a[i].l = l;  
  23.     a[i].r = r;  
  24.     a[i].ls = a[i].rs = a[i].ms = r-l+1;  
  25.     if(l!=r)  
  26.     {  
  27.         int mid = (l+r)>>1;  
  28.         init(l,mid,i*2);  
  29.         init(mid+1,r,2*i+1);  
  30.     }  
  31. }  
  32.   
  33. void insert(int i,int t,int x)  
  34. {  
  35.     if(a[i].l == a[i].r)  
  36.     {  
  37.         if(x==1)  
  38.             a[i].ls = a[i].rs = a[i].ms = 1;//修复  
  39.         else  
  40.             a[i].ls = a[i].rs = a[i].ms = 0;//破坏  
  41.         return ;  
  42.     }  
  43.     int mid = (a[i].l+a[i].r)>>1;  
  44.     if(t<=mid)  
  45.         insert(2*i,t,x);  
  46.     else  
  47.         insert(2*i+1,t,x);  
  48.     a[i].ls = a[2*i].ls;//左区间  
  49.     a[i].rs = a[2*i+1].rs;//右区间  
  50.     a[i].ms = max(max(a[2*i].ms,a[2*i+1].ms),a[2*i].rs+a[2*i+1].ls);//父亲区间内的最大区间必定是,左子树最大区间,右子树最大区间,左右子树合并的中间区间,三者中最大的区间值  
  51.     if(a[2*i].ls == a[2*i].r-a[2*i].l+1)//左子树区间满了的话,父亲左区间要加上右孩子的左区间  
  52.         a[i].ls += a[2*i+1].ls;  
  53.     if(a[2*i+1].rs == a[2*i+1].r-a[2*i+1].l+1)//同理  
  54.         a[i].rs += a[2*i].rs;  
  55. }  
  56.   
  57. int query(int i,int t)  
  58. {  
  59.     if(a[i].l == a[i].r || a[i].ms == 0 || a[i].ms == a[i].r-a[i].l+1)//到了叶子节点或者该访问区间为空或者已满都不必要往下走了  
  60.         return a[i].ms;  
  61.     int mid = (a[i].l+a[i].r)>>1;  
  62.     if(t<=mid)  
  63.     {  
  64.         if(t>=a[2*i].r-a[2*i].rs+1)//因为t<=mid,看左子树,a[2*i].r-a[2*i].rs+1代表左子树右边连续区间的左边界值,如果t在左子树的右区间内,则要看右子树的左区间有多长并返回  
  65.             return query(2*i,t)+query(2*i+1,mid+1);  
  66.         else  
  67.             return query(2*i,t);//如果不在左子树的右边界区间内,则只需要看左子树  
  68.     }  
  69.     else  
  70.     {  
  71.         if(t<=a[2*i+1].l+a[2*i+1].ls-1)//同理  
  72.             return query(2*i+1,t)+query(2*i,mid);  
  73.         else  
  74.             return query(2*i+1,t);  
  75.     }  
  76. }  
  77.   
  78. int main()  
  79. {  
  80.     int i,j,x;  
  81.     char ch[2];  
  82.     while(~scanf("%d%d",&n,&m))  
  83.     {  
  84.         top = 0;  
  85.         init(1,n,1);  
  86.         while(m--)  
  87.         {  
  88.             scanf("%s",ch);  
  89.             if(ch[0] == 'D')  
  90.             {  
  91.                 scanf("%d",&x);  
  92.                 s[top++] = x;  
  93.                 insert(1,x,0);  
  94.             }  
  95.             else if(ch[0] == 'Q')  
  96.             {  
  97.                 scanf("%d",&x);  
  98.                 printf("%d\n",query(1,x));  
  99.             }  
  100.             else  
  101.             {  
  102.                 if(x>0)  
  103.                 {  
  104.                     x = s[--top];  
  105.                     insert(1,x,1);  
  106.                 }  
  107.             }  
  108.         }  
  109.     }  
  110.   
  111.     return 0;  
版权声明:本文为博主原创文章,未经博主允许不得转载。

hdu 1540 Tunnel Warfare (线段树区间合并)

Tunnel Warfare Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...

hdu1540Tunnel Warfare (线段树,单点更新)

Problem Description During the War of Resistance Against Japan, tunnel warfare was carried out exte...

hdu 1540 Tunnel Warfare(线段树区间合并)

hdu 1540 Tunnel Warfare

hdu1540 Tunnel Warfare 线段树区间合并

题意:n个城镇在一条直线上,

HDU1540 Tunnel Warfare(线段树+set)

题目链接:HDU 1540 题意: 题意是一条线上的点,D x是破坏这个点,Q x是表示查询以x所在的最长的连续的点的个数,R是恢复上一次破坏的点。 最近在做线段树的专题,碰巧做到了这题...

HDU 1540 Tunnel Warfare(线段树 区间合并 最大连续区间)

题意  有n个连在一起的地道  接下来有m个操作  D x 炸掉x号地道  炸掉后x所在的区间就不连续了  Q x 查询输出包括x的最大连续区间长度   R修复最后一个被炸的地道  注意输入R时可能并...
  • acvay
  • acvay
  • 2015年04月22日 14:25
  • 588

HDU1540 Tunnel Warfare(线段树:维护最大连续子串)

HDU1540 Tunnel Warfare(线段树:区间合并) http://acm.hdu.edu.cn/showproblem.php?pid=1540 分析:        首先先来分析题目中...

【HDU - 1540】Tunnel Warfare 【线段树+单点更新+区间合并】

During the War of Resistance Against Japan, tunnel warfare was carried out extensively in the vast a...

HDU 1540 Tunnel Warfare(线段树区间合并)

题意: 题目定义了3种操作 D代表破坏村庄, R代表修复最后被破坏的那个村庄, Q代表询问包括x在内的最大连续区间是多少 思路: 和前面几道线段树的区间合并一样,在线段树的区...

(转自一位神牛,收藏起来以后留着看)hdu 1540 Tunnel Warfare(线段树区间合并)

题意:D代表破坏村庄,R代表修复最后被破坏的那个村庄,Q代表询问包括x在内的最大连续区间是多少 思路:代码中的注释已经比较详细了,所以不多解释什么,在线段树的区间内,我们要用三个变量记录左边连续区间...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:ACM 数据结构 线段树 HDU 1540 Tunnel Warfare
举报原因:
原因补充:

(最多只允许输入30个字)