# ACM 数据结构 线段树 HDU 1540 Tunnel Warfare

1. Problem Description
During the War of Resistance Against Japan, tunnel warfare was carried out extensively in the vast areas of north China Plain. Generally speaking, villages connected by tunnels lay in a line. Except the two at the ends, every village was directly connected with two neighboring ones.

Frequently the invaders launched attack on some of the villages and destroyed the parts of tunnels in them. The Eighth Route Army commanders requested the latest connection state of the tunnels and villages. If some villages are severely isolated, restoration of connection must be done immediately!

Input
The first line of the input contains two positive integers n and m (n, m ≤ 50,000) indicating the number of villages and events. Each of the next m lines describes an event.

There are three different events described in different format shown below:

D x: The x-th village was destroyed.

Q x: The Army commands requested the number of villages that x-th village was directly or indirectly connected with including itself.

R: The village destroyed last was rebuilt.

Output
Output the answer to each of the Army commanders’ request in order on a separate line.

Sample Input
7 9
D 3
D 6
D 5
Q 4
Q 5
R
Q 4
R
Q 4

Sample Output
1
0
2
4

2. #include <stdio.h>
3. #include <string.h>
4. #include <algorithm>
5. #include <math.h>
6. #include <stdlib.h>
7. using namespace std;
8.
9. const int maxn = 50000+10;
10.
11. int n,m;
12. int s[maxn],top;//s为模拟栈
13.
14. struct node
15. {
16.     int l,r;
17.     int ls,rs,ms;//ls,左端最大连续区间，rs右端最大连续区间，ms区间内最大连续区间
18. } a[maxn<<2];
19.
20. void init(int l,int r,int i)
21. {
22.     a[i].l = l;
23.     a[i].r = r;
24.     a[i].ls = a[i].rs = a[i].ms = r-l+1;
25.     if(l!=r)
26.     {
27.         int mid = (l+r)>>1;
28.         init(l,mid,i*2);
29.         init(mid+1,r,2*i+1);
30.     }
31. }
32.
33. void insert(int i,int t,int x)
34. {
35.     if(a[i].l == a[i].r)
36.     {
37.         if(x==1)
38.             a[i].ls = a[i].rs = a[i].ms = 1;//修复
39.         else
40.             a[i].ls = a[i].rs = a[i].ms = 0;//破坏
41.         return ;
42.     }
43.     int mid = (a[i].l+a[i].r)>>1;
44.     if(t<=mid)
45.         insert(2*i,t,x);
46.     else
47.         insert(2*i+1,t,x);
48.     a[i].ls = a[2*i].ls;//左区间
49.     a[i].rs = a[2*i+1].rs;//右区间
50.     a[i].ms = max(max(a[2*i].ms,a[2*i+1].ms),a[2*i].rs+a[2*i+1].ls);//父亲区间内的最大区间必定是，左子树最大区间，右子树最大区间，左右子树合并的中间区间，三者中最大的区间值
51.     if(a[2*i].ls == a[2*i].r-a[2*i].l+1)//左子树区间满了的话，父亲左区间要加上右孩子的左区间
52.         a[i].ls += a[2*i+1].ls;
53.     if(a[2*i+1].rs == a[2*i+1].r-a[2*i+1].l+1)//同理
54.         a[i].rs += a[2*i].rs;
55. }
56.
57. int query(int i,int t)
58. {
59.     if(a[i].l == a[i].r || a[i].ms == 0 || a[i].ms == a[i].r-a[i].l+1)//到了叶子节点或者该访问区间为空或者已满都不必要往下走了
60.         return a[i].ms;
61.     int mid = (a[i].l+a[i].r)>>1;
62.     if(t<=mid)
63.     {
64.         if(t>=a[2*i].r-a[2*i].rs+1)//因为t<=mid，看左子树，a[2*i].r-a[2*i].rs+1代表左子树右边连续区间的左边界值，如果t在左子树的右区间内，则要看右子树的左区间有多长并返回
65.             return query(2*i,t)+query(2*i+1,mid+1);
66.         else
67.             return query(2*i,t);//如果不在左子树的右边界区间内，则只需要看左子树
68.     }
69.     else
70.     {
71.         if(t<=a[2*i+1].l+a[2*i+1].ls-1)//同理
72.             return query(2*i+1,t)+query(2*i,mid);
73.         else
74.             return query(2*i+1,t);
75.     }
76. }
77.
78. int main()
79. {
80.     int i,j,x;
81.     char ch[2];
82.     while(~scanf("%d%d",&n,&m))
83.     {
84.         top = 0;
85.         init(1,n,1);
86.         while(m--)
87.         {
88.             scanf("%s",ch);
89.             if(ch[0] == 'D')
90.             {
91.                 scanf("%d",&x);
92.                 s[top++] = x;
93.                 insert(1,x,0);
94.             }
95.             else if(ch[0] == 'Q')
96.             {
97.                 scanf("%d",&x);
98.                 printf("%d\n",query(1,x));
99.             }
100.             else
101.             {
102.                 if(x>0)
103.                 {
104.                     x = s[--top];
105.                     insert(1,x,1);
106.                 }
107.             }
108.         }
109.     }
110.
111.     return 0;

• 本文已收录于以下专栏：

## hdu1540Tunnel Warfare 线段树

//Q pos 问包含pos的连续区间的长度 //D pos 删除pos位置的元素 //R 恢复上一个被删除的元素 //用栈维护被删除的元素位置 //用线段树维护左边连续区间，右边连续区间的长度 #i...
• cq_pf
• 2015年07月26日 17:19
• 552

## hdu 1540 Tunnel Warfare （线段树区间合并）

Tunnel Warfare Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
• qiqi_skystar
• 2015年12月17日 10:45
• 1372

## HDU1540：Tunnel Warfare(线段树区间合并)

Problem Description During the War of Resistance Against Japan, tunnel warfare was carried out exte...
• libin56842
• 2013年11月03日 15:05
• 5499

## HDU1540 Tunnel Warfare(线段树:维护最大连续子串)

HDU1540 Tunnel Warfare(线段树:区间合并) http://acm.hdu.edu.cn/showproblem.php?pid=1540 分析:        首先先来分析题目中...
• u013480600
• 2014年03月29日 19:18
• 1141

## POJ2892 HDU 1540 Tunnel Warfare, 树状数组

• neofung
• 2012年01月29日 23:54
• 965

## HDU 1540 Tunnel Warfare (线段树)

Tunnel WarfareTime Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T...
• mrlry
• 2016年10月24日 22:51
• 169

## HDU 1540 Tunnel Warfare 线段树

Tunnel Warfare Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...
• u013014691
• 2015年02月07日 18:50
• 453

## hdu 1540 Tunnel Warfare(线段树)

• u011328934
• 2014年10月03日 10:43
• 1028

## HDU 1540 Tunnel Warfare（线段树）

HDU 1540 Tunnel Warfare 题目链接 题意：n个村庄连成一排，有3种操作 D x 破坏x村庄 R 恢复上一个被破坏的村庄 Q x 询问x村庄所在连续村庄长度 ...
• u011217342
• 2014年10月13日 22:16
• 570

## hdu 1540 Tunnel Warfare【线段树】

• u013912596
• 2014年08月02日 16:09
• 480

举报原因： 您举报文章：ACM 数据结构 线段树 HDU 1540 Tunnel Warfare 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)