二分查找

原创 2016年06月01日 14:03:11

一、查找key元素所在的下标

//1、查找key所在位置的下标
int BinarySearch(int arr[], int len,int key)//[left,right]
{
	if (arr == NULL || len <= 0)
		return -1;
	int left = 0;
	int right = len - 1;
	while (left <= right)
	{
		int mid = left +(right-left)/2;
		if (arr[mid] == key)
		{
			return mid;
		}
		else if (arr[mid]<key)
		{
			left = mid + 1;
		}
		else
		{
			right = mid - 1;
		}
	}
	return -1;
}

二、查找key的值第一次出现的下标

1、方法一:

int BinarySearch_First1(int arr[], int len, int key)//[left,right]
{
	if (arr == NULL || len <= 0)
		return -1;
	int left = 0;
	int right = len - 1;
	int res = -1;
	while (left <= right)
	{
		int mid = left + (right - left) / 2;
		if (arr[mid] == key)
		{
			res = mid;
			right = mid - 1;
		}
		else if (arr[mid] < key)
		{
			left = mid + 1;
		}
		else
		{
			right = mid - 1;
		}
	}
	return res;
}

2、方法二:

int BinarySearch_First2(int arr[], int len, int key)//[left,right]
{
	if (arr == NULL || len <= 0)
		return -1;
	int left = 0;
	int right = len - 1;
	while (left <= right)
	{
		int mid = left + (right - left) / 2;
		if (arr[mid] == key)
		{
			if (mid >= 1 && arr[mid - 1] == key)
			{
				right = mid - 1;
			}
			else
			{
				return mid;
			}
		}
		else if (arr[mid] < key)
		{
			left = mid + 1;
		}
		else
		{
			right = mid - 1;
		}
	}
	return -1;
}


三、查找key的值最后一次出现的下标

1、方法一:

int BinarySearch_Last1(int arr[], int len, int key)//[left,right]
{
	if (arr == NULL || len <= 0)
		return -1;
	int left = 0;
	int right = len - 1;
	int res = -1;
	while (left <= right)
	{
		int mid = left + (right - left) / 2;
		if (arr[mid] == key)
		{
			res = mid;
			left = mid + 1;
		}
		else if (arr[mid] < key)
		{
			left = mid + 1;
		}
		else
		{
			right = mid - 1;
		}
	}
	return res;
}

2、方法二:

int BinarySearch_Last2(int arr[], int len, int key)//[left,right]
{
	if (arr == NULL || len <= 0)
		return -1;
	int left = 0;
	int right = len - 1;
	while (left <= right)
	{
		int mid = left + (right - left) / 2;
		if (arr[mid] == key)
		{
			if (mid <= right - 1 && arr[mid + 1] == key)
			{
				left = mid + 1;
			}
			else
			{
				return mid;
			}
		}
		else if (arr[mid] < key)
		{
			left = mid + 1;
		}
		else
		{
			right = mid - 1;
		}
	}
	return -1;
}

四、查找刚好小于key值的最大元素的下标

int BinarySearch_Small(int arr[], int len, int key)//[left,right]
{
	if (arr == NULL || len <= 0)
		return -1;
	int left = 0;
	int right = len - 1;
	while (left <= right)
	{
		int mid = left + (right - left) / 2;
		if (arr[mid] == key)
		{
			right = mid - 1;
		}
		else if (arr[mid] < key)
		{
			if (mid <= right - 1 && arr[mid + 1] < key)
			{
				left = mid + 1;
			}
			else
			{
				return mid;
			}
		}
		else
		{
			right = mid - 1;
		}
	}
	return -1;
}

五、查找刚好小于key值的最小元素的下标

int BinarySearch_Big(int arr[], int len, int key)//[left,right]
{
	if (arr == NULL || len <= 0)
		return -1;
	int left = 0;
	int right = len - 1;
	while (left <= right)
	{
		int mid = left + (right - left) / 2;
		if (arr[mid] == key)
		{
			left = mid - 1;
		}
		else if (arr[mid] < key)
		{
			left = mid + 1;
		}
		else if (arr[mid]>key)
		{
			if (mid >= 1 && arr[mid - 1] > key)
			{
				right = mid - 1;
			}
			else
			{
				return mid;
			}
		}
	}
	return -1;
}

六、总结

1、二分查找一定要关注区间是[ ]还是[ )

2、对应找到key值的最小下标还是最大下标分别有两种方法

但是方法一:适用于几个相等的值不连续的情况(例如;在有序但是含有N ULL的字符串数组中查找字符串)

3、对于找到刚好比key值小还是比key值大的就是在区间上增加一些判断条件即可,也就是上面的第二类题的第第二种解法




版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

二分查找教程

  • 2014年10月11日 22:40
  • 226KB
  • 下载

lintCode_二分查找

笔试面试算法题

简单二分查找

  • 2014年06月28日 22:59
  • 605B
  • 下载

二分查找--java实现

  • 2015年10月26日 19:19
  • 2KB
  • 下载

Collections.sort方法实现Comparator比较器进行二分查找

/*Collections.sort方法实现Comparator比较器 Collections 工具类 */ import java.util.*; class CollectionsDemo { ...
  • blacop
  • blacop
  • 2016年07月18日 09:47
  • 490

二分查找代码

  • 2015年10月17日 22:11
  • 1KB
  • 下载

二分查找的实现

  • 2013年07月03日 16:09
  • 2.25MB
  • 下载

两种方式Java实现二分查找法

小树今天使用递归方法实现了二分查找法,也写了普通的二分查找法,代码如下:import java.util.*;public class BinarySort { public static v...

二分查找算法

  • 2012年07月29日 10:25
  • 683KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:二分查找
举报原因:
原因补充:

(最多只允许输入30个字)