关闭

UVALive 7139 - Rotation

传送门题意:由n*m个格子组成的网格地图,一辆车沿着边移动,车从起点出发,最终又回到起点 每个格子中间都站着一个人,一直面向着车,若(x,y)格子的人在车子行驶过程中,顺时针转了a度,逆时针b度,则对答案的贡献是(a−b360)2{(\frac{a-b}{360})}^2,求贡献之和因为最终必定要回到起点,所以不难发现没有被车的路径包围住的格子,对答案贡献都是0 而当车子从(x,y)->(x+d...
阅读(35) 评论(0)

UVALive - 7045 Last Defence

传送门101,1000,899,101,798,697,101,596,495,101,394,293,101,192,91,101,.....101,1000,899,101,798,697,101,596,495,101,394,293,101,192,91,101,..... 7,4,3,1,2,...7,4,3,1,2,... 不难发现 ①:假如当前只有a,b,l=abs(a−b)a,...
阅读(118) 评论(0)

UVALive - 7040 Color 【容斥定理】

传送门f(k)=k∗(k−1)n−1=选择不超过k种颜色,相邻颜色不同,染n个格子的方案数(第一个格子有k种选择,之后n−1个格子有k−1种颜色可以选)f(k)=k*(k-1)^{n-1}=选择不超过k种颜色,相邻颜色不同,染n个格子的方案数(第一个格子有k种选择,之后n-1个格子有k-1种颜色可以选) 恰好使用了k种颜色的方案数=f(k)−(不使用颜色1+不使用颜色2+...)+(不使用颜色1和...
阅读(41) 评论(0)

HDU3507 Print Article 【斜率优化DP】

传送门sum[i]=∑ij=0c[j]sum[i]=\sum_{j=0}^{i}c[j] d[i]=min{d[j]+M+(sum[i]−sum[j])2 | j<i }d[i]=min\{d[j]+M+(sum[i]-sum[j])^2\ |\ j<i\ \} 若d[a]+M+(sum[i]−sum[a])2<d[b]+M+(sum[i]−sum[b])2若d[a]+M+(sum[i]-s...
阅读(45) 评论(0)

HDU5952 Counting Cliques 【搜索剪枝】

传送门直接dfs搜索,当前搜到u点,则只向前搜索>u的点即可#include #include #define ll long long #define pii pair #define pll pair #define MEM(a,x) memset(a,x,sizeof(a)) #define lowbit(x) (...
阅读(48) 评论(0)

Timus 1003. Parity 【并查集】

传送门输入的询问可能=0 巨坑…..因此re一晚上令sum[j]=∑ji=0a[i]   (mod2)令sum[j]=\sum_{i=0}^{j}a[i]\ \ \ (mod 2) 则若sum[a]=sum[b]且sum[b]=sum[c],则sum[a]=sum[b]=sum[c]具有传递性则若sum[a]=sum[b] 且sum[b]=sum[c],则sum[a]=sum[b]=sum...
阅读(60) 评论(0)

51NOD 1952 栈 【单调队列】

传送门动态维护一个非严格单调递增队列即可 这样队列尾就是最大值 每个元素只可能进出队列各一次 O(n)#include #include #define ll long long #define pii pair #define pll pair #define MEM(a,x) memset(a,x,sizeof...
阅读(57) 评论(0)

2017北京网赛hihocoder #1582 : Territorial Dispute 【凸包】

传送门分情况讨论 当n>=4时: 显然必然yes,随便抽出4点: 1.如果形成凸多边形,则ABAB必然成立 2.如果形成凹多边形,则必定3点能形成三角型,剩余一点在三角形内,那三角形3点为A,内部一点为B即可 3.四点共线,ABA成立当n=3时:显然只有三点共线才成立 当n<=2时,必然不成立于是求一遍凸包,若凸包含有4个不同点,凸多边形 含有3个不同点,三角形 如果只有2个不同点,...
阅读(113) 评论(0)

2017北京网赛 hihocoder #1580 : Matrix 【DP】

传送门就像最大子矩阵和一样降维 先不考虑p 枚举行i,j,sum[k]=∑jx=imat[x][k]枚举行i,j , sum[k]=\sum_{x=i}^{j}mat[x][k] 则对sum[]求一遍最大字段和即可得到最大子矩阵则对sum[]求一遍最大字段和即可得到最大子矩阵这里同理,令minVal[k]=min(mat[x][k]|i<=x<=j)这里同理,令minVal[k]=min(ma...
阅读(310) 评论(0)

Codeforces862 E. Mahmoud and Ehab and the function

传送门sumA=∑ni=1(−1)i−1aisumA=\sum_{i=1}^{n}(-1)^{i-1}a_i sumB[j]=∑ni=1(−1)ibi+jsumB[j]=\sum_{i=1}^{n}(-1)^ib_{i+j} 显然f(j)=|sumA+sumB[j]|f(j)=|sumA+sumB[j]|对每次更新[l,r,x][l,r,x] 显然只有(r−l+1)%2==1时,sumA才会改...
阅读(48) 评论(0)

Codeforces862C. Mahmoud and Ehab and the xor 【构造】

传送门不难发现只有n=2,x=0时才输出NO 特判n=1,2时 当n>=3: 令xorSum=1^2^3^….^(n-3) t=x^xorSum 则可以构造出: t!=0:1,2,3,....(n−3),t+(1<<18),(1<<18),0t!=0 : 1,2,3,....(n-3),t+(1<<18),(1<<18),0 t==0:1,2,3,...,(n−2),(1<<18),[...
阅读(65) 评论(0)

HDU6208The Dominator of Strings 【AC自动机】

传送门显然只有长度最长的串才可能是答案 若有2个串长度最长 且不相同 无解建立ac自动机,若存在>=2个深度最大的节点 无解 用最长的串跑一遍查询,如果能匹配到的串恰好有n个 答案就是该串#include #include #define ll long long #define pii pair #define pll pair...
阅读(56) 评论(0)

HDU6215 Brute Force Sorting 【模拟】

传送门显然 当[l,r]被删除后,下一轮可能删除的位置必定是从l-1或r+1开始 每删除一个值,将其左右边的值放进队列,用一个数组标记是否被删除过,避免重复操作即可#include #include #define ll long long #define pii pair #define pll pair #defi...
阅读(46) 评论(0)

HDU6214 Smallest Minimum Cut 【最大流求最小割边】

传送门因为最大流=最小割边的最大流量限制之和 因为m<=1000 将每条边流量*2000+1 跑出来的最大流%2000=最小割边数量#include #include #define ll long long #define pii pair #define pll pair #define MEM(a,x) me...
阅读(92) 评论(0)

Codeforces853B. Jury Meeting

传送门预处理出所有人在第i天之前到达0所需要的最小花费sumT0[] 以及 所有人在第j天后回去所需要的最小花费sumF0[]枚举开会时间i 则ans=min(sumT0[i−1]+sumF0[i+k]ans=min(sumT0[i-1]+sumF0[i+k]#include #include #define ll long long #defin...
阅读(63) 评论(0)
288条 共20页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:94560次
    • 积分:3777
    • 等级:
    • 排名:第9068名
    • 原创:288篇
    • 转载:0篇
    • 译文:0篇
    • 评论:11条
    文章分类
    最新评论