关闭

POJ 2182/暴力/BIT/线段树

66人阅读 评论(0) 收藏 举报
分类:

POJ 2182

  • 暴力
/*
题意:
一个带有权值[1,n]的序列,给出每个数的前面比该数小的数的个数,当然比一个数前面比第一个数小的个数是0,省略不写,求真正的序列。(拗口)
首先想到的是从前到后暴力枚举暴力枚举。数据量为8000,O(n^2)。
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<deque>
#include<set>
using namespace std;
const int maxn=8000+10;
int ans [maxn];
int a[maxn];
int vis[maxn];
int N;
int main ()
{
    scanf("%d",&N);
    for(int i=2;i<=N;i++)
        scanf("%d",&a[i]);

    for(int i=N;i>=1;i--)
    {
        int t=0,j;
        for( j=1;j<=N;j++)//遍历1~ ~N;
        {
           if(!vis[j])
           {
               t++;
               if(t==a[i]+1)
                   break;
           }
        }
        ans[i]=j;
        vis[j]=1;
    }
    for(int i=1;i<=N;i++)
        printf("%d\n",ans[i]);
    return 0;
}
/*
其实BIT的算法跟暴力的思想是一样的,只是实现的不同BIT维护的是i前面
比i小的数出现的个数num[i](因为是从后向前遍历的,这些出现过的数是
在后面用过的数,不参与i的计算)。然后i-1-num[i]就是比i小的个数。
然后用二分的思想,找到的个数与实际个数比较。
*/
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=10000+5;
int c[maxn];
int a[maxn];
int n;
int lowbit(int x)
{
    return x&(-x);
}
void add(int i,int x)
{
    while(i<=n)
    {
        c[i]+=x;
        i+=lowbit(i);
    }
}
int sum(int i)
{
    int ret=0;
    while(i>0)
    {
        ret+=c[i];
        i-=lowbit(i);
    }
    return ret;
}
int solve(int x)
{
    int l=1;
    int r=n;
    while(l<r)
    {
        int m=(l+r)>>1;
        int cnt=sum(m);
        if(m-1-cnt>=x)
            r=m;
        else
            l=m+1;
    }
    return l;
}
int main ()
{
    while(~scanf("%d",&n))
    {
        a[0]=0;
        for(int i=1;i<n;i++)
            scanf("%d",&a[i]);
        for(int i=n-1;i>=0;i--)
        {
            int x=solve(a[i]);
            a[i]=x;
            add(a[i],1);
        }
        for(int i=0;i<n;i++)
            printf("%d\n",a[i]);
    }
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:17878次
    • 积分:1092
    • 等级:
    • 排名:千里之外
    • 原创:95篇
    • 转载:8篇
    • 译文:0篇
    • 评论:9条