关闭

POJ 3368/RMQ

81人阅读 评论(0) 收藏 举报
分类:

题目链接

/*
给出一段序列,询问[L,R]区间内最大相同数的个数。
用一个很巧妙地方法,转化成求区间内的最大值的问题。
RMQ维护区间最大值。
MAX处理:
*/
    for(int i=1;i<n;i++)
        {
            if(a[i]==a[i-1])
                d[i]=d[i-1]+1;
            else
                d[i]=1;
        }
/*
给出一个序列,1、1、1、1、2、3、4、5.
长度为8,求[2,8];即{1、1、1、2、3、4、5},暴力求出3,(前三个数相同),然后RMQ[5,8],取两者最大值。
£:说一来麻烦,举个栗子。
*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long  LL;
const int maxn =100000+5;
int a[maxn];
int d[maxn];
int dp[maxn][20];
int n,q;
int l,r;
int RMQ(int l,int r)
{
    int k=log((double)(r-l+1))/log(2.0);//学长的写法,可以的。
    return max(dp[l][k],dp[r-(1<<k)+1][k]);
}
int main ()
{
    while(scanf("%d",&n),n)
    {
        scanf("%d",&q);
        for(int i=0;i<n;i++)
            scanf("%d",&a[i]);
        d[0]=1;
        for(int i=1;i<n;i++)
        {
            if(a[i]==a[i-1])
                d[i]=d[i-1]+1;
            else
                d[i]=1;
        }
        for(int i=0;i<n;i++)
            dp[i][0]=d[i];
        for(int k=1;(1<<k)<=n;k++)
            for(int i=0;i+(1<<k)-1<n;i++)
                dp[i][k]=max(dp[i][k-1],dp[i+(1<<(k-1))][k-1]);
        for(int i=0;i<q;i++)
        {
            scanf("%d%d",&l,&r);
            l--;
            r--;
            if(l>r)
                continue;
            if(l==r)
                printf("1\n");
            else
            {
                int t=l;
                while(t<r&&a[t]==a[t+1])t++;
                int ans=t-l+1;
                if(t==r||t+1==r)
                    printf("%d\n",ans);
                else
                {
                    printf("%d\n",max(ans,RMQ(t+1,r)));
                }
            }
        }
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:17853次
    • 积分:1092
    • 等级:
    • 排名:千里之外
    • 原创:95篇
    • 转载:8篇
    • 译文:0篇
    • 评论:9条