poj1178Camelot(floyd最短路算法+枚举)

原创 2016年05月31日 17:41:53

因为是8×8的方格,所以枚举终点位以及亚瑟王与骑士相遇的相遇位,floyd求一下最短路,最后去一下那个遇到亚瑟王的骑士的重复步数。

恩……刚开始没有思路……用DP没有做出来……(╯﹏╰)然后看了其他用枚举的思路……(づ。◕‿‿◕。)づ

我会好好记住的!!

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>

using namespace std;

int kmove[8][2]={{1,0},{1,1},{0,1},{-1,1},{-1,0},{-1,-1},{0,-1},{1,-1}};
int knmove[8][2]={{2,1},{1,2},{-1,2},{-2,1},{-2,-1},{-1,-2},{1,-2},{2,-1}};
const int inf=100000000;
int kmap[64][64];
int knmap[64][64];
int i,j;

bool ok(int x,int y)  //判断位置的正确性
{
	if(x>=0&&x<8&&y>=0&&y<8) return true;
	else return false;
}

void getxy(int p,int &x,int &y)  //得出坐标
{
	x=p%8;
	y=p/8;
}

int getPosition(int x,int y) //得出数字位置
{
	return x+y*8;
}


void init()  //初始化
{
	for(int i=0;i<64;++i)
	{
		for(int j=0;j<64;++j)
		{kmap[i][j]=inf;knmap[i][j]=inf;}

		kmap[i][i]=0;
		knmap[i][i]=0;

		int x,y,tx,ty;
		int next;

		getxy(i,x,y);

		for(j=0;j<8;++j)
		{
			tx=kmove[j][0]+x;
			ty=kmove[j][1]+y;
			if(ok(tx,ty))
			{
				next=getPosition(tx,ty);
				kmap[i][next]=1;
			}

			tx=knmove[j][0]+x;
			ty=knmove[j][1]+y;
			if(ok(tx,ty))
			{
				next=getPosition(tx,ty);
				knmap[i][next]=1;
			}
		}
	}
}

void floyd()    //最短路
{
	for(int k=0;k<64;++k)
		for(int i=0;i<64;++i)
			for(int j=0;j<64;++j)
			{
				kmap[i][j]=kmap[i][j]<(kmap[i][k]+kmap[k][j])?kmap[i][j]:(kmap[i][k]+kmap[k][j]);
				knmap[i][j]=knmap[i][j]<(knmap[i][k]+knmap[k][j])?knmap[i][j]:(knmap[i][k]+knmap[k][j]);
			}
}

int main()
{
	string s;
	int num,size,minmove,sum;
	int position[64];

	init();
	floyd();

	cin>>s;
	size=s.size();
	num=0;

	for(int i=0;i<size;i+=2)
		position[num++]=s[i]-'A'+(s[i+1]-'1')*8;

	minmove=inf;
	for(int ds=0;ds<64;++ds) //最终位
		for(int m=0;m<64;++m) //相遇位
			for(int k=1;k<num;++k)  //相遇骑士
			{
				sum=0;
				for(int i=1;i<num;++i) sum+=knmap[position[i]][ds];//骑士到达终点位步数
				sum+=kmap[position[0]][m]; //国王到相遇位步数
				sum+=knmap[position[k]][m]+knmap[m][ds];  //骑士k于相遇位到最终位的步数
				sum-=knmap[position[k]][ds];  //减去k骑士多算的一次
				if(sum<minmove) minmove=sum;
			}
	printf("%d\n",minmove);
	return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

poj 1178 Camelot floyd + 枚举

参照:http://wenku.baidu.com/view/daea9f6a561252d380eb6e06.html http://www.cppblog.com/mythit/archive/...

Floyd最短路算法的MATLAB程序

  • 2011年09月10日 21:35
  • 986KB
  • 下载

Floyd最短路算法

  • 2015年12月15日 19:28
  • 174KB
  • 下载

USACO-Section 3.3 Camelot (最短路&&枚举)

最开始没注意到有国王,就想到直接先用BFS处理出任意两点间的“最短路”,然后枚举终点即可,复杂度是O(n*m) 后来发现有国王,还是往枚举的方向想,可以枚举搭载国王的骑士,再枚举搭载国王的点,复杂度...

Floyd最短路算法的MATLAB程序

  • 2012年06月23日 12:09
  • 3KB
  • 下载

最短路算法详解(Dijkstra/SPFA/Floyd)

常用的图论最短路算法详解(dijkstra/SPFA/floyd)

初识最短路算法-Bellman-Ford, Djistera & Floyd

学习最短路中>.. 好吧,真相是:发现图论学的一团糟,所以下决心从最基础的开始一步一步走结实一些~~~ 在此总结一下三种单源最短路的算法: 1.Bellman-Ford算法 适用范围:DA...

最短路算法(Floyd、Dijsktra、Bellman-Ford、SPFA)

最短路算法基本可以分为以下两个步骤: ①初始化(任意两边的距离) ②松弛操作 在图论中,最关键的是如何建图。 在最短路算法中,首先要处理数据,在这个时候,要考虑该用那种方式建图。 比较常见的建图方式...

最短路算法详解(Dijkstra/SPFA/Floyd)

最短路算法详解:Dijkstra、SPFA、Floyd

Floyd最短路算法(转)

坐在马桶上看算法:只有五行的Floyd最短路算法 此算法由Robert W. Floyd(罗伯特·弗洛伊德)于1962年发表在“Communications of the ACM”上。同年Ste...
  • Tsaryu
  • Tsaryu
  • 2017年03月26日 10:41
  • 341
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj1178Camelot(floyd最短路算法+枚举)
举报原因:
原因补充:

(最多只允许输入30个字)