利用归并排序求逆序对

也是老生常谈的一个话题了,在这里再记录一遍,作个笔记
逆序对(inversion pair)是指在序列{a0,a1,a2...an}中,若ai<aj(i>j),则(ai,aj)上一对逆序对。而逆序数 (inversion number)顾名思义就是序列中逆序对的个数。例如: 1 2 3是顺序,则逆序数是0;1 3 2中(2,3)满足逆序对的条件,所以逆序数只有1; 3 2 1中(1,2)(1,3)(2,3)满足逆序对,所以逆序是3。由定义不能想象,序列n的逆序数范围在[0,n*(n-1)/2],其中顺序时逆序数为 0,完全逆序时逆序数是n*(n-1)/2。
就我所知,目前求这种逆序对最快的算法是利用归并排序,其时间复杂度为O(nlgn), 空间复杂度为O(n)
闲话少说,看代码
#include  < stdio.h >
#include 
< stdlib.h >

//
// 求逆序数
// 最快的算法是归并排序时计算逆序个数,时间复杂度是nlog2n, 空间复杂度是2n
// a为字符数组,len为字符数组的长度
int  number  =   0 // number表示逆序对的个数
void  mergePass( char   * char   * int int );
void  merge( char * char * int int int );
void  copy( char   * dest,  char   * src,  int  l,  int  r)
{
    
while(l <= r)
    
{
        dest[l] 
= src[l];
        l
++;
    }

}

void  mergeSort( char   * a,  int  size)
{
    
char *= (char*)malloc(sizeof(char* size);
    mergePass(a, b, 
0, size - 1);
    free(b);
}



void  mergePass( char   * a,  char   * b,  int  l,  int  r)
{
    
int m;
    
if(l < r)
    
{
        m 
= (l + r) / 2;
        mergePass(a,b,l,m);
        mergePass(a,b,m
+1,r);
        merge(a,b,l,m,r);
        copy(a,b,l,r);

    }

}


void  merge( char   * a,  char   * b,  int  l,  int  m,  int  r)
{
    
int i = l, j = m + 1;
    
while( i <= m && j <= r)
    
{
        
if(a[i] <= a[j])
            b[l
++= a[i++];
        
else
        
{
            b[l
++= a[j++];
                        
//a[i] > a[j], 表示出现了逆序对,此时由于
                        
//a[i..m]是已经有序了,那么a[i+1], a[i+2], ... a[m]都是大于a[j]的,
                        
//都可以和a[j]组成逆序对,因此number += m - i + 1
            number += m-i+1;
        }

    }

    
while(i <= m)
        b[l
++= a[i++];
    
while(j <= r)
        b[l
++= a[j++];
}



int  main()
{
    
char a[10= {'A','A','C','A','T','G','A','A','G','G'};
    
char b[5= {'A''B''A''A','A'};
    mergeSort(b, 
5);
    
for(int i = 0; i < 10; i++)
        printf(
"%c ",a[i]);
    printf(
"%d ", number);
    system(
"pause");
    
return 0;
}

里面的代码可以改成模板形式,以达到和具体数据类型无关的目的
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值